版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西百色市德保县九年级数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5 B.4.2 C.5.8 D.72.下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形3.如图,将绕点顺时针旋转,得到,且点在上,下列说法错误的是()A.平分 B. C. D.4.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°6.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B.C. D.7.一元二次方程x2-2x=0根的判别式的值为()A.4 B.2 C.0 D.-48.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或9.菱形中,,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为()A.1 B.2 C.3 D.410.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=6二、填空题(每小题3分,共24分)11.在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大.12.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为_____.13.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.14.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.15.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是______________.16.如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,连接BB′,则∠BAC′的度数为_____°.17.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.18.如图,矩形对角线交于点为线段上一点,以点为圆心,为半径画圆与相切于的中点交于点,若,则图中阴影部分面积为________________.三、解答题(共66分)19.(10分)小明和小亮两人一起玩投掷一个普通正方体骰子的游戏.(1)说出游戏中必然事件,不可能事件和随机事件各一个;(2)如果两个骰子上的点数之积为奇数,小明胜,否则小亮胜,你认为这个游戏公平吗?如果不公平,谁获胜的可能性较大?请说明理由.请你为他们设计一个公平的游戏规则.20.(6分)如图,平面直角坐标系中,A、B、C坐标分别是(-4,0)、(-4,-1)、(-1,1).(1)将△ABC绕点O逆时针方向旋转90°后得△A1B1C1,画出△A1B1C1;(1)写出A1、B1、C1的坐标;(3)画出△ABC关于点O的中心对称图形△A1B1C1.21.(6分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.(1)求反比例函数的解析式;(2)过点作轴的平行线,点在直线上运动,点在轴上运动.①若是以为直角顶点的等腰直角三角形,求的面积;②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)22.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?23.(8分)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.24.(8分)如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧所围成的封闭图形的面积.25.(10分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.26.(10分)已知线段AC(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.
参考答案一、选择题(每小题3分,共30分)1、D【题目详解】解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的长不能大于1.∴故选D.2、B【分析】利用正方形的判定、平行四边形的性质,矩形的判定分别判断后即可确定正确的选项.【题目详解】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的矩形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选B.【题目点拨】本题考查了正方形的判定,平行四边形的性质,矩形的判定,熟练运用这些性质解决问题是本题的关键.3、C【分析】由题意根据旋转变换的性质,进行依次分析即可判断.【题目详解】解:解:∵△ABC绕点A顺时针旋转,旋转角是∠BAC,∴AB的对应边为AD,BC的对应边为DE,∠BAC对应角为∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D选项正确,C选项不正确.故选:C.【题目点拨】本题考查旋转的性质,旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【题目详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【题目点拨】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.5、C【分析】根据勾股定理求解.【题目详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【题目点拨】考点:勾股定理逆定理.6、D【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【题目详解】解:分两种情况讨论:①当k<0时,反比例函数y=在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确;故选:D.【题目点拨】本题主要考查反比例函数与二次函数的图象,掌握k对反比例函数与二次函数的图象的影响是解题的关键.7、A【解题分析】根据一元二次方程判别式的公式进行计算即可.【题目详解】解:在这个方程中,a=1,b=-2,c=0,∴,故选:A.【题目点拨】本题考查一元二次方程判别式,熟记公式正确计算是本题的解题关键.8、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【题目详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【题目点拨】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.9、B【分析】根据菱形的性质可知,AO=CO=3,OB=OD,AC⊥BD,再根据勾股定理求出BO的长,从而可以判断出结果.【题目详解】解:如图,由菱形的性质可得,AO=CO=3,BO=DO,AC⊥BD,在Rt△ABO中,BO==DO≠3,∴点A,C在上,点B,D不在上.故选:B.【题目点拨】本题考查菱形的性质、点与圆的位置关系以及勾股定理,掌握基本性质和概念是解题的关键.10、C【分析】按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【题目详解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【题目点拨】本题主要考查配方法,掌握完全平方公式是解题的关键.二、填空题(每小题3分,共24分)11、白【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【题目详解】根据题意,袋子中共6个球,其中有1个红球,2个绿球和3个白球,故将球摇匀,从中任取1球,
①恰好取出红球的可能性为
,
②恰好取出绿球的可能性为
,
③恰好取出白球的可能性为
,
摸出白颜色的球的可能性最大.故答案是:白.【题目点拨】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.12、15°【分析】根据圆周角和圆心角的关系解答即可.【题目详解】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°【题目点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.13、35°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,根据三角形内角与外角的关系可得∠B的大小.【题目详解】∵同弧所对的圆周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD−∠D=35°,故答案为:35°.【题目点拨】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系.14、1【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【题目详解】解:根据题意得:x1+x2=3,x1x2=2,
所以x1+x2-x1x2=3-2=1.
故答案为:1.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.15、48π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【题目详解】解:侧面积是:,底面圆半径为:,底面积,故圆锥的全面积是:,故答案为:48π【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、1【分析】由图形选择的性质,∠BAC=∠B′AC′则问题可解.【题目详解】解:∵Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,∴∠BAC=∠B′AC′=40°,∴∠BAC′=∠BAC+∠B′AC′=1°,故答案为:1.【题目点拨】本题考查了图形旋转的性质,解答关键是应用旋转过程中旋转角不变的性质.17、【分析】根据圆锥的侧面积公式即可得.【题目详解】圆锥的侧面积公式:,其中为底面半径,为圆锥母线则该圆锥的侧面积为故答案为:.【题目点拨】本题考查了圆锥的侧面积公式,熟记公式是解题关键.18、【分析】连接BG,根据切线性质及G为中点可知BG垂直平分AO,再结合矩形性质可证明为等边三角形,从而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三边关系求出AB,然后求出和扇形BEF的面积,两者相减即可得到阴影部分面积.【题目详解】连接BG,由题可知BG⊥OA,∵G为OA中点,∴BG垂直平分OA,∴AB=OB,∵四边形ABCD为矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即为等边三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案为:.【题目点拨】本题考查了扇形面积的计算,矩形的性质,含30°角的直角三角形的三边关系以及等边三角形的判定与性质,较为综合,需熟练掌握各知识点.三、解答题(共66分)19、(1)详见解析;(2)不公平,规则详见解析.【分析】(1)根据题意说出即可;(2)游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等,算出该情况下两人获胜的概率.【题目详解】(1)必然事件是两次投出的朝上的数字之和大于1;不可能事件是两次投出的朝上的数字之和为13;随机事件是两次投出的朝上的数字之和为5;(2)不公平.所得积是奇数的概率为×=,故小明获胜的概率为,小亮获胜的概率为,小亮获胜的可能性较大.将“点数之积”改为“点数之和”.【题目点拨】考查了判断的游戏公平性.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.概率=所求情况数与总情况数之比.20、(1)画图形见解析;(1),,;(3)画图形见解析【分析】(1)依据△ABC绕点O逆时针方向旋转90°后得到△A1B1C1,进行画图即可;(1)根据(1)所画的图形,即可写出坐标;(3)依据中心对称的性质,即可得到△ABC关于原点O对称的△A1B1C1;【题目详解】解:(1)画出图形,即为所求;(1)由图可知:,,;(3)画出图形,即为所求.【题目点拨】此题主要考查了旋转变换作图,以及坐标和图形,正确得出三角形对应点的位置是解题的关键.21、(1);(2)①或.②1或2.【解题分析】(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.
(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.
②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.【题目详解】解:(1))∵四边形OACD是正方形,边长为3,
∴点B的纵坐标为3,点E的横坐标为3,
∵反比例函数的图象交AC,CD于点B,E,设的坐标分别为.∵S△OBE=4,可得,.解得,,(舍).所以,反比例函数的解析式为.(2))①如图1中,设直线m交OD于M.由(1)可知B(1,3),AB=1,BC=2,
当PC=PQ,∠CPQ=90°时,
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=∴S△PCQ=如图2中,当PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=1,
∴PC=PQ=,∴S△PCQ=.所以,的面积为或.②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.或CQ′=PQ′=,可得S△P′CQ′=2,不存在点C为等腰三角形的直角顶点,
综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.
故答案为1或2.【题目点拨】本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、每轮感染中平均一台电脑感染11台.【分析】设每轮感染中平均一台电脑感染x台,根据经过两轮被感染后就会有(1+x)2台电脑被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【题目详解】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.【题目点拨】本题考查了一元二次方程的应用-传播问题,掌握传播问题中的等量关系,正确列出一元二次方程是解题的关键.23、(1)详见解析;(2)详见解析【分析】(1)连接OA,由等边三角形性质和圆周角定理可得∠AOC的度数,从而得到∠OCA,再由AP=AC得到∠PAC,从而算出∠PAO的度数;(2由切线长定理得PA,PB,从而说明PO垂直平分AB,得到CB=CA,再根据∠ABC=60°,从而判定等边三角形.【题目详解】解:(1)证明:连接.又是半径,是的切线.(2)证明:连接是的切线,是的垂直平分线.是等边三角形.【题目点拨】本题考查了外接圆的性质,垂直平分线的判定和性质,切线的性质,等腰三角形的性质,等边三角形的判定,此题难度适中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级数学上册 【同步讲练】好玩 第一课时 设计秋游方案、图形中的规律教材详解+分层训练(含答案)(北师大版)
- 与社区合作社签订合同范本
- 转租施工合同范本
- 北京居住合同范本
- 精彩的商场防暴演练
- 微生物学检验技术 课件 5项目五:粪便标本采集与处理
- 哪些协议不能称为合同范本
- 食品入驻沃尔玛的合同范本
- 柴油运输合同范本
- 竞聘班长竞聘书
- 急诊急救知识培训
- 老年人中常见呼吸系统疾病的诊断与治疗
- 雨水泵站及配套工程施工组织设计样本
- 成长生涯发展展示
- T-ZJFS 010-2024 银行业金融机构转型贷款实施规范
- 六年级数学课件-圆的面积【全国一等奖】
- 食管炎的护理查房
- 老年人的火灾预防与自救技巧课件
- 新时代鲁班精神
- 《教育的初心》读书分享
- 软件工程生涯发展展示
评论
0/150
提交评论