2024届广西兴业县联考数学九上期末复习检测模拟试题含解析_第1页
2024届广西兴业县联考数学九上期末复习检测模拟试题含解析_第2页
2024届广西兴业县联考数学九上期末复习检测模拟试题含解析_第3页
2024届广西兴业县联考数学九上期末复习检测模拟试题含解析_第4页
2024届广西兴业县联考数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西兴业县联考数学九上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在矩形中,,的平分线交边于点,于点,连接并延长交边于点,连接交于点,给出下列命题:(1)(2)(3)(4)其中正确命题的个数是()A. B. C. D.2.如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中点,D是AB的中点,且,则这段弯路所在圆的半径为()A. B. C. D.3.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>-1 D.-1<m<04.如图,这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,则这个花坛的周长(实线部分)为()A.4π米 B.π米 C.3π米 D.2π米5.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100° B.80° C.60° D.50°6.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为()A. B. C. D.7.如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=()A.1:2 B.2:3 C.3:4 D.2:58.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是()A.小明认为只有当时,函数值为1;B.小亮认为找不到实数,使函数值为0;C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;D.小梅发现函数值随的变化而变化,因此认为没有最小值9.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C. D.10.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.12.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.13.如图,是的直径,弦交于点,,,,则的长为_____.14.化简:__________.15.如图,在平面直角坐标系中,点,点.若与关于原点成中心对称,则点的对应点的坐标是___________;和的位置关系和数量关系是____________.16.如图,身高为1.7m的小明AB站在小河的一岸,利用树的倒影去测量河对岸一棵树CD的高度,CD在水中的倒影为C′D,A、E、C′在一条线上.如果小河BD的宽度为12m,BE=3m,那么这棵树CD的高为_____m.17.已知二次函数(a是常数,a≠0),当自变量x分别取-6、-4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1__y2(填“>”、“<”或“=”).18.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.1.其中正确的结论是_____.(把你认为正确结论的序号都填上)三、解答题(共66分)19.(10分)如图,是内接三角形,点D是BC的中点,请仅用无刻度的直尺,分别按下列要求画图.(1)如图1,画出弦AE,使AE平分∠BAC;(2)如图2,∠BAF是的一个外角,画出∠BAF的平分线.20.(6分)先化简:,再求代数式的值,其中是方程的一个根.21.(6分)如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.22.(8分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)______,______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.23.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AF=2,求AE的长.24.(8分)如图,直线与⊙相离,于点,与⊙相交于点,.是直线上一点,连结并延长交⊙于另一点,且.(1)求证:是⊙的切线;(2)若⊙的半径为,求线段的长.25.(10分)(1)计算:(2)解方程:26.(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.(1)画树状图或列表求出各人获胜的概率。(2)这个游戏公平吗?说说你的理由

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据矩形的性质,勾股定理,等腰三角形的判定与性质以及全等三角形的判定与性质逐一对各命题进行分析即可得出答案.【题目详解】(1)在矩形ABCD中,∵DE平分∴∵∴是等腰直角三角形∴∴∵是等腰直角三角形∴∴∴∴∴,故(1)正确;(2),∴,故(2)正确;(3)∵∴∵∴∴∴∴∴∴∴,故(3)正确;(4)∵在和中,∴∴在和中,∴∴∴,故(4)正确故选D【题目点拨】本题考查了矩形的性质,勾股定理,全等三角形的判定及性质,等腰三角形的性质等,熟练掌握和灵活运用相关知识是解题的关键.2、A【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【题目详解】解:,,在中,,设半径为得:,解得:,这段弯路的半径为故选A.【题目点拨】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.3、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【题目详解】顶点坐标(m,m+1)在第一象限,则有解得:m>0,故选B.考点:二次函数的性质.4、A【分析】根据弧长公式解答即可.【题目详解】解:如图所示:∵这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,∴OA=OC=O'A=OO'=O'C=1,∴∠AOC=120°,∠AOB=60°,∴这个花坛的周长=,故选:A.【题目点拨】本题考查了圆的弧长公式,找到弧所对圆心角度数是解题的关键5、B【解题分析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B6、B【解题分析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【题目详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为,故选:B.【题目点拨】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7、B【分析】由平行四边形的性质可得AD=BC,AD∥BC,可证△DEG∽△CFG,可得=.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵F为BC的中点,∴CF=BF=BC=AD,∵DE:AD=1:3,∴DE:CF=2:3,∵AD∥BC,∴△DEG∽△CFG,∴=.故选:B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质及相似三角形的判定与性质.8、D【分析】根据二次函数的最值及图象上点的坐标特点回答即可.【题目详解】因为该抛物线的顶点是,所以正确;根据二次函数的顶点坐标,知它的最小值是1,所以正确;根据图象,知对称轴的右侧,即时,y随x的增大而增大,所以正确;因为二次项系数1>0,有最小值,所以错误;故选:D.【题目点拨】本题主要考查了二次函数图象与最值问题,准确分析是解题的关键.9、C【分析】证明△ABC是等腰直角三角形即可解决问题.【题目详解】解:∵AB=AC,

∴∠B=∠C,

∵∠A=2∠B,

∴∠B=∠C=45°,∠A=90°,

∴在Rt△ABC中,BC==AC,

∴sin∠B•sadA=,故选:C.【题目点拨】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【题目详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【题目点拨】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解.【题目详解】解:y=0时,0=x2﹣4x+1,解得x1=1,x2=1∴线段AB的长为2,∵与y轴交点C(0,1),∴以AB为底的△ABC的高为1,∴S△ABC=×2×1=1,故答案为:1.【题目点拨】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法.12、【分析】直接根据概率公式求解.【题目详解】解:随机摸出一个球是红色的概率=.

故答案为:.【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13、【分析】作于,连结,由,得,由,,得,进而得,根据勾股定理得,即可得到答案.【题目详解】作于,连结,如图,∵,∴,∵,,∴,∴,∴,∵在中,,∴,∴,∵在中,,,∴,∴.故答案为:【题目点拨】本题主要考查垂径定理和勾股定理的综合,添加辅助线,构造直角三角形和弦心距,是解题的关键.14、0【分析】根据cos(90°-A)=sinA,以及特殊角的三角函数值,进行化简,即可.【题目详解】原式====0.故答案是:0【题目点拨】本题主要考查三角函数常用公式以及特殊角三角函数值,掌握三角函数的常用公式,是解题的关键.15、平行且相等【分析】根据关于原点对称的点的坐标特征即可写出对应点坐标,再根据中心对称的性质即可判断对应线段的关系.【题目详解】如图,∵关于原点对称的两个点,横、纵坐标都互为相反数,且,∴,根据旋转的性质可知,AB=A′B′,∠A=∠A′,∴AB∥A′B′.故答案为:;平行且相等.【题目点拨】本题考查坐标与图形变化-旋转,明确关于原点对称的点的坐标特征及旋转的性质是解题的关键.16、5.1.【解题分析】试题分析:根据题意可知:BE=3m,DE=9m,△ABE∽△CDE,则,即,解得:CD=5.1m.点睛:本题注意考查的就是三角形相似实际应用的题目,难度在中等.在利用三角形相似,我们一般都是用来测量较高物体或无法直接测量的物体的高度,解决这种题目的时候,我们首先要找到有哪两个三角形相似,然后根据相似三角形的边成比例得出位置物体的高度.17、>【分析】先求出抛物线的对称轴为,由,则当,y随x的增大而减小,即可判断两个函数值的大小.【题目详解】解:∵二次函数(a是常数,a≠0),∴抛物线的对称轴为:,∵,∴当,y随x的增大而减小,∵,∴;故答案为:.【题目点拨】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质进行解题.18、①、②、④.【分析】①先利用等腰三角形的性质可得一组角相等,又因有一组公共角,所以由三角形相似的判定定理即可得;②根据为等腰三角形,加上、AB的值可得出底边CD的值,从而可找到两个三角形有一组相等的边,在加上①中两组相等的角,即可证明全等;③因只已知为直角三角形,所以要分两种情况考虑,利用三角形相似可得为直角三角形,再结合的值即可求得BD;④设,则,由∽得,从而可得出含x的等式,化简分析即可得.【题目详解】①(等边对等角)又∽,所以①正确;②作于H,如图在中,又由等腰三角形三线合一性质得,当时,则又在和中,,所以②正确;③为直角三角形,有两种情况:当时,如图1∽在中,可解得当时,如图2在中,可解得综上或,所以③不正确;④设,则由∽得,即故,所以④正确.综上,正确的结论有①②④.【题目点拨】本题考查了等腰三角形的定义和性质、三角形全等的判定、相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)连接OD,延长OD交于E,连接AE,根据垂径定理可得,根据圆周角定理可得∠BAE=∠CAE,即可得答案;(2)连接OD,延长OD交于E,连接AE,反向延长OD,交于H,作射线AH,由(1)可知∠BAE=∠CAE,由HE是直径可得∠EAH=∠BAE+∠BAH=90°,根据平角的定义可得∠CAE+∠FAH=90°,即可证明∠BAH=∠FAH,可得答案.【题目详解】(1)如图,连接OD,延长OD交于E,连接AE,∵OE为半径,D为BC中点,∴,∴∠BAE=∠CAE,∴AE为∠BAC的角平分线,弦即为所求.(2)如图,连接OD,延长OD交于E,连接AE,反向延长OD,交于H,作射线AH,∵HE是直径,点A在上,∴∠EAH=∠BAE+∠BAH=90°,∴∠CAE+∠FAH=90°,由(1)可知∠BAE=∠CAE,∴∠BAH=∠FAH,∴AH平分∠BAF,射线即为所求.【题目点拨】本题考查垂径定理及圆周角定理,平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧;直径所对的圆周角是直角(90°);熟练掌握相关定理是解题关键.20、;1.【分析】首先对括号内的分式进行通分,然后把除法转化为乘法即可化简,最后整体代值计算.【题目详解】解:,,,,;∵是方程的一个根,∴,∴,∴,∴原式=【题目点拨】本题考查了分式的化简求值和一元二次方程的根,熟知整体代入是解答此题关键.21、(1);(2)见解析.【分析】(1)由A、N两点坐标可求AN的长,利用,,由勾股定理求BN即可,(2)连接MC,NC,由是的直径,可得,D为线段的中点,由直角三角形斜边中线CD的性质得ND=CD,由此得,由半径知,利用等式的性质得∠MCD=∠MND=90º,可证直线是的切线.【题目详解】的坐标为,,,,由勾股定理可知:,;连接MC,NC,是的直径,,,为线段的中点,,,,,,,即,直线是的切线.【题目点拨】本题考查点的坐标与切线问题,掌握用两点坐标求线段的长,能在直角三角形中,利用30º角求线段,会利用勾股定理解决问题,会利用半径证角等,利用直角三角形的斜边中线解决角等与线段相等问题,利用等式的性质证直角等知识.22、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)【分析】(1)先用20除以40%求出样本容量,然后求出a,m的值,并补全条形统计图即可;(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算.【题目详解】解:(1))20÷40%=50人,a=18÷50×100%=36%,m=50×16%=8,(2)b=4÷50×100%=8%,(人)∵∴这次活动能顺利开展.(3)树状图如下:由此可见,共有12种等可能的结果,其中所选两人都是女生的结果数有2种∴(两人都是女生).【题目点拨】此题考查了统计表和条形统计图的综合,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比.23、(1)答案见解析;(2).【解题分析】试题分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似;(2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论