广东省中山市名校2024届数学九年级第一学期期末学业质量监测试题含解析_第1页
广东省中山市名校2024届数学九年级第一学期期末学业质量监测试题含解析_第2页
广东省中山市名校2024届数学九年级第一学期期末学业质量监测试题含解析_第3页
广东省中山市名校2024届数学九年级第一学期期末学业质量监测试题含解析_第4页
广东省中山市名校2024届数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中山市名校2024届数学九年级第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c< B.c< C.c> D.c>2.把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为()A. B.C. D.3.在同一直角坐标系中,一次函数与反比例函数的图象大致是()A. B. C. D.4.已知线段a是线段b,c的比例中项,则下列式子一定成立的是()A. B. C. D.5.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.12mmC.6mm D.6mm6.下列事件中,是随机事件的是()A.任意一个五边形的外角和等于540°B.通常情况下,将油滴入水中,油会浮在水面上C.随意翻一本120页的书,翻到的页码是150D.经过有交通信号灯的路口,遇到绿灯7.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗8.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点,.若反比例函数经过点C,则k的值等于()A.10 B.24 C.48 D.5010.下列四个三角形,与左图中的三角形相似的是().A. B. C. D.二、填空题(每小题3分,共24分)11.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是.12.用配方法解一元二次方程,配方后的方程为,则n的值为______.13.如图,在中,,,,则的长为__________.14.如图,在菱形中,与交于点,若,则菱形的面积为_____.15.计算:=_____________16.如图,在平面直角坐标系中,为线段上任一点,作交线段于,当的长最大时,点的坐标为_________.17.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.18.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.三、解答题(共66分)19.(10分)有六张完全相同的卡片,分两组,每组三张,在组的卡片上分别画上“√,×,√”,组的卡片上分别画上“√,×,×”,如图①所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).(2)若把两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.20.(6分)已知:二次函数y=x2﹣6x+5,利用配方法将表达式化成y=a(x﹣h)2+k的形式,再写出该函数的对称轴和顶点坐标.21.(6分)解方程:22.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为的形式:求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解;求解一元二次方程,把它转化为两个一元一次方程来解:求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一一转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程,可以通过因式分解把它转化为,解方程和,可得方程的解.利用上述材料给你的启示,解下列方程;(1);(2).23.(8分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.(1)求证:平分;(2)若,求圆弧的半径;(3)在的情况下,若,求阴影部分的面积(结果保留和根号)24.(8分)如图,在正方形中,对角线、相交于点,为上动点(不与、重合),作,垂足为,分别交、于、,连接、.(1)求证:;(2)求的度数;(3)若,,求的面积.25.(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.26.(10分)如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,(1)求证:直线CD是⊙O的切线.(2)求证:△FEC是等腰三角形

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据方程没有实数根,则解得即可.【题目详解】由题意可知:△==9﹣4c<0,∴c>,故选:D.【题目点拨】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.2、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【题目详解】解:把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为:.故选:C.【题目点拨】此题考查了抛物线的平移,属于基本题型,熟知抛物线的平移规律是解答的关键.3、C【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【题目详解】(1)当k>0时,一次函数y=kx-k

经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:C.【题目点拨】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.4、B【解题分析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【题目详解】A选项,由得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【题目点拨】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.5、A【解题分析】试题解析:已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.故选A.6、D【分析】根据随机事件的定义,逐一判断选项,即可得到答案.【题目详解】∵任意一个五边形的外角和等于540°,是必然事件,∴A不符合题意,∵通常情况下,将油滴入水中,油会浮在水面上,是必然事件,∴B不符合题意,∵随意翻一本120页的书,翻到的页码是150,是不等能事件,∴C不符合题意,∵经过有交通信号灯的路口,遇到绿灯,是随机事件,∴D符合题意,故选D.【题目点拨】本题主要考查随机事件的定义,掌握必然事件,随机事件,不可能事件的定义,是解题的关键.7、B【解题分析】试题解析:由题意得,解得:.故选B.8、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【题目详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【题目点拨】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.9、C【分析】由菱形的性质和锐角三角函数可求点,将点C坐标代入解析式可求k的值.【题目详解】解:如图,过点C作于点E,∵菱形OABC的边OA在x轴上,点,∴,∵.∴,∴∴点C坐标∵若反比例函数经过点C,∴故选C.【题目点拨】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.10、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【题目详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.

A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;

B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.

故选:B.【题目点拨】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.二、填空题(每小题3分,共24分)11、【解题分析】试题分析:根据抛物线的平移规律:左加右减,上加下减,可知:把抛物线向下平移2个单位得,再向右平移1个单位,得.考点:抛物线的平移.12、7【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【题目详解】解:∵,∴,∴,∴,∴;故答案为:7.【题目点拨】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.13、6【分析】根据相似三角形的性质即可得出答案.【题目详解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案为6.【题目点拨】本题考查的是相似三角形,比较简单,容易把三角形的相似比看成,这一点尤其需要注意.14、.【分析】根据菱形的面积等于对角线乘积的一半求解即可.【题目详解】四边形是菱形,,,菱形的面积为;故答案为:.【题目点拨】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.15、-1【分析】根据二次根式的性质和负整数指数幂的运算法则进行计算即可.【题目详解】故答案为:-1.【题目点拨】此题主要考查了二次根式的性质以及负整数指数幂的运算法则,熟练掌握其性质和运算法则是解此题的关键.16、(3,)【分析】根据勾股定理求出AB,由DE⊥BD,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,利用相似三角形求出x,再根据三角形相似求出点E的横纵坐标即可.【题目详解】∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∵DE⊥BD,∴∠BDE=90°,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,则BF=EF=DF=,∵∠ADF=∠AOB=90°,∴DF∥OB∴△ADF∽△AOB∴∴,解得x=,过点E作EG⊥x轴,∴EG∥OB,∴△AEG∽△ABO,∴,∴,∴EG=,AG=1,∴OG=OA-AG=4-1=3,∴E(3,),故答案为:(3,).【题目点拨】此题考查圆周角定理,相似三角形的判定及性质,勾股定理,本题借助半圆解题使题中的DE⊥BD所成的角确定为圆周角,更容易理解,是解此题的关键.17、65°【解题分析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理18、2.【题目详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.三、解答题(共66分)19、(1);(2)①;②【分析】(1)画出树状图计算即可;(2)①三张卡片上正面的标记有三种可能,分别为“√,×,√”,然后计算即可;②正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,计算即可;【题目详解】(1)解:根据题意,可画出如下树形图:从树形图可以看出,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是“√”的结果有2种,∴(两张都是“√”)(2)解:①∵三张卡片上正面的标记有三种可能,分别为“√,×,√”,∴随机揭开其中一个盖子,看到的标记是“√”的概率为.②∵正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,∴猜对反面也是“√”的概率为.【题目点拨】本题主要考查了概率的计算,准确理解题意是解题的关键.20、y=(x﹣3)2-4;对称轴为:x=3;顶点坐标为:(3,-4)【分析】首先把x2-6x+5化为(x-3)2-4,然后根据把二次函数的表达式y=x2-6x+5化为y=a(x-h)2+k的形式,利用抛物线解析式直接写出答案.【题目详解】y=x2-6x+9-9+5=(x-3)2-4,即y=(x-3)2-4;抛物线解析式为y=(x-3)2-4,

所以抛物线的对称轴为:x=3,顶点坐标为(3,-4).【题目点拨】此题考查二次函数的三种形式,解题关键在于熟练掌握三种形式之间相互转化的方法.21、,【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【题目详解】解:整理得解得:,【题目点拨】本题考查了解一元二次方程-公式法,熟练掌握一元二次方程的几种常用解法是解题关键.22、(1);(2)x=1【分析】(1)因式分解多项式,然后得结论;(2)根据题目中的方程,两边同时平方转化为有理方程,然后解方程即可,注意,最后要检验,所得的根是否使得原无理方程有意义.【题目详解】解:(1)∵,∴,∴,∴,,,解得:;(2)∵,∴,∴,∴,解得:x1=-1,x2=1,经检验,x=1是原无理方程的根,x=-1不是原无理方程的根,即方程,的解是x=1.【题目点拨】本题考查解无理方程、因式分解法,解答本题的关键是明确解方程的方法,注意无理方程最后要检验.23、(1)证明见解析;(2)2;(3).【分析】(1)连接,由BC是圆的切线得到,利用内错角相等,半径相等,证得;(2)过点作,根据垂径定理得到AH=1,由,利用勾股定理得到半径OA的长;(3)根据勾股定理求出BD的长,再分别求出△BOD、扇形POD的面积,即可得到阴影部分的面积.【题目详解】证明:(1)连接,为半径的圆弧与相切于点,,,又,,,平分(2)过点作,垂足为,,在四边形中,,四边形是矩形,,在中,;(3)在中,,,,∴.,,.【题目点拨】此题考查切线的性质,垂径定理,扇形面积公式,已知圆的切线即可得到垂直的关系,圆的半径,弦长,弦心距,根据勾股定理与垂径定理即可求得三个量中的一个.24、(1)见解析;(2);(3)3【分析】(1)结合正方形的性质利用ASA即可证明;(2)由两组对应角相等可证,由相似三角形对应线段成比例再等量代换可得,由两边对应成比例及其夹角相等的两个三角形相似可证,由相似三角形对应角相等可得的度数;(3)结合相似三角形对应角相等及直角三角形的性质根据两组对应角相等的两个三角形相似可证,由其对应线段成比例的性质可得的值,由三角形面积公式计算即可.【题目详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论