版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一种轴扭转变形动态测量系统的设计及实现丁珍红;吉小军;刘月华【摘要】ThispaperdesignedandachievedakindofrealtimekinematicmeasurementsystemtoangeloftorsionbasedonphasedifferencemethodwiththecoredesignofFPGA.Thissystem1scolorcodetransducerusedtomeasurespeedandtorquewascomposedofreflectivelaserprobeandcolorcodemadeontherevolvingshaft.Theoutputswereintheformofimpulseandphasedifferencewhileprofessionalphasedemodulation,periodandpulsewidthmeasurementmodulefocusonFPGA.Stimulating,fieldprovingandactualtestingshowthatthesystemmeasuringaccuracyissuperiorto0.5%fullspanwithinthemeasuringrangeof0to2000N-m.Asaresult,itcaneffectivelysolvekinematicmeasurementtoangeloftorsion,torqueandpowerofhighrollingshaftsundertoughcircumstances.%设计并实现了一种以现场可编程门阵列(FPGA)为核心的相位差式的扭转变形动态测量系统。该系统以反射式激光测头和制作在旋转轴上的色标带构成敏感转速和作用扭矩的色标传感器,输出信号为脉冲和相位差。此外,以FPGA为核心构建了专用的鉴相、周期及相位脉宽测量模块。仿真、现场标定和实际测试表明,在0~2000N.m量程范围内,系统的综合测量精度小于0.5%满量程,能有效解决恶劣条件下高速转轴扭转角、扭矩及功率等动态测量问题。【期刊名称】《中国机械工程》【年(勤期】2011(022)014【总页数】4页(P1672-1675)【关键词】FPGA;扭转角测量;相位差;鉴相模块【作者】丁珍红;吉小军;刘月华【作者单位】上海交通大学,上海200240;上海交通大学,上海200240;上海交通大学上海200240【正文语种】中文【中图分类】TP2730引言轴扭转变形可以反映出轴的材料特性、负载特性及安全性等许多信息。在机械工程中,轴扭转变形的测量(包括静态和动态测量)是一项基础且极为关键的技术。静态测量主要对材料的扭转力学性能进行测试[1];动态测量主要测试能够间接表征旋转动力机械设备运行状况的扭矩、功率等信息,以对设备的动力特性、运行可靠性进行监测和故障诊断[2]。实现轴扭转变形测量需要解决传感器、能量供给和信号传输三方面的问题。目前,国内夕卜研制的传感器从原理上讲主要分为应变型、磁弹性型、转角型等[3]。其中,应变型使用最多,它采用在旋转轴表面贴应变片的传统方法,利用适当的电路取得信号,然后进行分析处理[4]。此种传感器因成本低、操作简便而被广泛使用在静态和低速旋转系统的扭转变形测量上,测量精度可达0.1%满量程,量程范围广,可满足多数应用需求,但该类扭矩传感器应用时需要妥善解决旋转条件下的可靠供电和信号传输问题。磁弹性型和转角型传感器因对制作、安装工艺要求高,目前在工业现场还很少获得应用。在实际测量,尤其是动态实时测量过程中,一些特殊的条件,如工作环境恶劣(高温、高湿度、剧烈振动),安装空间有限,引线难度大,高转速等实际条件下,测量系统对传感器的性能会有更苛刻的要求[5]。光学测角法因具有非接触、高准确度和高灵敏度的特点而倍受人们的重视[6-7]。因此,笔者基于相位差测量原理提出并实现了一种扭转变形动态测量系统,可以解决恶劣条件下高速转轴的扭转变形的动态实时测量问题。1测量系统的工作原理与结构设计长度为L的弹性轴在受到大小为N的扭矩作用时,轴将产生变形,任意两个横截面绕中心轴发生相对转动,从而产生一个扭转角0:式中,G为材料的剪切弹性模量;Ip为横截面对圆心的极惯性矩。由式(1)可知,根据扭转角0可以计算出扭矩N的值,但在实际应用中,由于扭转角非常小难于直接测量,一般都是通过一定的转换装置将其转化为脉冲信号的相位差来进行测量。目前常用的扭转式测量系统通过在轴上安装两个规格完全相同的齿轮和磁电式传感器实现[8-9]。扭矩作用时,两个与齿轮相对应的磁电式传感器将输出两路脉冲信号,通过测量这两路脉冲信号的相位差来实现扭转角的测量。这种系统结构复杂,体积与重量大,要求被测轴段有缩紧状结构,安装不便。笔者在测量轴上加工出色标带,利用反射式激光测头来得到包含转速与扭转角信息的脉冲信号,其结构原理如图1所示。图1测量原理示意图在被测旋转轴上相隔一定间距的位置处平行粘贴、喷涂或加工反光与不反光的材料或结构,形成交替分布的反光与不反光的色标带,如图1所示。在与被测轴通过轴承相固连的套筒上A、B位置处安装2个反射式激光测头。当轴旋转且承受一定的扭矩载荷时,A、B处两个色标传感器(包括激光测头和色标带)的输出为频率相同但相位差一定的两路脉冲信号脉冲信号的周期T反映了轴的转速。在转速一定的情况下,色标条的数目决定了测量的动态特性。设色标条的数目为m,则脉冲信号的周期T和转速n(r/min)的关系为两路信号的相位差反映了扭矩载荷的大小,随着扭矩的增大,两路信号的相位差也增大反之则变小,如图2所示。设T1为两信号的相位差脉宽,由式(1)推导可以得到将式(3)代入式(1)得由电工学原理可知式中,k为由测量构件决定的比例系数;P为功率,kW。图2处理后的扭矩信号波形由式(3)~式(5)可看出,只要测出脉冲信号的周期T和相位差脉宽T1,就可以得知一定扭矩载荷下扭转角的大小,通过测量扭转角便可得知轴变形并间接得到扭矩、功率的大小。2测量电路系统的方案设计由上述测量原理可以看出,扭转角测量的关键在于对色标传感器输出的脉冲信号的周期和相位差脉宽的测量。本文以现场可编程门阵列(field-programmablegatearray,FPGA)为核心,设计了专用的测量电路进行脉宽的测量和数据的存储及传输。电路系统采取模块化的设计思想,包括电源电路、放大电路、精密整形电路、FPGA主控电路、FLASH存储电路、通信电路,其系统原理如图3所示。色标传感器将扭矩信号转化成电信号,经放大整形后送入精密整形电路得到两路同频方波,两路同频方波在FPGA内部经过异或运算得到表征相位差的脉冲信号,然后采用等精度测量技术测量其周期和脉宽,并将测量结果送到FLASH存储芯片AT45DB081中存储,需要时可将数据从存储器中读出,并经串口发送到上位机进行显示或后续处理。FPGA采用硬件逻辑具有功耗低、速度快、时钟频率高等特点,同时所有相关逻辑运算全部在芯片内部完成,从而简化了电路设计,并且高频信号全部在芯片内部,增强了系统的抗干扰能力[10]。系统中,周期和脉宽的测量主要通过FPGA中的计数器完成。采用等精度测量技术,可保证对任何频率的脉冲信号都能进行整周期记数从而使因控制信号脉宽变化以及随机出现时间造成的误差,最多为标准频率信号的一个时钟周期。图3系统原理框图3相位差的测定和仿真式(4)给出了扭转角与相位差之间的换算公式,通过测量相位差便可进行扭转角的测量,如何对相位差进行准确测量是整个系统的关键。前述两路信号的相位差与传感器安装的相对位置及旋转轴传递扭矩的大小有关。旋转轴在不受扭转载荷作用时,两路信号之间的相位差即初始相位差只与色标传感器的安装相对位置有关。空载情况下,使一端传感器固定,调整另一端传感器的位置。理论上讲,应保证两组光电接收装置输出波形的初相位差T0=0,但由于色标的加工误差、激光传感器的安装偏差等因素,故只能保证T0尽可能接近于0。当轴受扭转载荷作用时,两路信号(PA、PB)产生相位差,利用FPGA设计专门的鉴相模块(原理见图4)测量相位差。图4鉴相模块原理图旋转轴在扭转过程中,输出的两路信号相位在理论上有两种情况:PA超前、PB超前。但由于振动、色标加工误差以及两个色标传感器的安装偏差等因素,故输出的两路信号之间还会出现相位不固定的情况。为了验证图4所示鉴相模块的适用性,对以上3种情况进行了仿真,如图5所示。图5相位差测量模块对3种相位关系的仿真结果仿真结果表明,当PA、PB超前、滞后固定时,鉴相模块可以准确提取出PA、PB的相位差,而当PA、PB超前、滞后不固定时,鉴相模块无法准确获得两个信号间的相位差。为解决这一问题,本文中通过调整两端传感器的位置,改变PA、PB的初始相位差,使其理论值增大到兀以此保证轴旋转过程中,PA、PB超前、滞后固定,这样鉴相模块就能正确提取两信号间的相位差。4扭转变形动态实时测量的应用实现根据上述扭转变形动态实时测量的工作原理和技术特征,拟在某一大型高精密高转速扭转角的应用系统中进行测试,该系统主要在恶劣条件下对高速转轴进行扭矩、功率的测量,由式(4)、式(5)可知,只要通过测量扭转角便可间接测量出旋转扭矩和旋转功率,在测试系统中,满载工况下的旋转速度控制为200r/min。在测试系统(原理如图1所示)中,合金钢旋转轴的轴径D为120mm,综合考虑灵敏度及安装方便两个因素,反射式激光测头所在的A、B两点的轴向距离L取为600mm。考虑到测量的可靠性、加工与计算的方便,系统中采用30个色标条,即m=30。基于检测距离、响应时间、开关频率和延迟时间等因素的考虑,系统选用基恩士公司的激光测头FS-V30。此外,电路控制系统中采用的晶体振荡器发出的信号频率为20MHz,利用FPGA内部的倍频模块PLL将标准时钟频率提高到100MHz,理论上的绝对测量误差只有10ns。此相位差式扭转变形动态测量系统在某计量站进行了标定和验证,取得了满意的效果。表1所示为转速为200r/min、不同扭矩载荷工况下扭转角的测量数据,通过标准扭矩加载装置加载固定的扭矩载荷值燃后进行2~3min连续测量,对测量值取平均得到扭矩测量均值。表2为恒定扭矩(50Nom)条件下的转速测量结果,同样,通过设置固定的转速,连续测量2~3min,对测量值取平均得到转速测量均值。测量过程中,进程、回程往返3次,分别对3次测量数据取平均得到一组进程数据、一组回程数据,用以验证重复性。图6所示为重复性测量效果。从表1、表2和图6可以看出,在2000N-m的量程范围,对扭矩测量的精度小于0.5%满量程,完全能满足工程应用的需要。表1转速为200r/min工况下的相位差测量结果扭矩标准值(Mm)0200600100014001800140010006002000扭矩测量均值(N°m)0200.1600.89971395.41796.11397.71006596.3192-6.5弓I用误差(%)0.0050.040.150.230.1950.1150.30.1850.40.230.195表2恒定扭矩(50Nom)条件下的转速测量结果标准值(r/min)501005001000150025001500100050010050测量均值(r/min)50.2100.3500.21001.31501.22501.31501.01001.2500.1100.350.1相对误差(%)0.40.30.040.130.080.0520.0670.120.020.30.2图6200r/min工况下扭转角测量的重复性5结语本文以FPGA为核心设计并实现了一种轴扭转变形动态测量系统。该系统采用体积小、安装方便的色标传感器以及FPGA鉴相模块来测量相位差,并通过调整两路信号的初相位差,解决了实际测量中的相位差不固定的问题,从而实现了轴扭转变形的测定。由于是非接触式测量,因此大大提高了抗干扰能力和稳定性。最后通过仿真、现场标定和实际测试验证了该系统的性能。实验表明,在0~2000N-m量程范围内,扭矩和转速的测量精度均小于0.5%满量程,能有效地解决恶劣条件下高速转轴扭转角及转速的动态测量从而解决动力传动中的扭矩及功率等测量问题。参考文献:【相关文献】口、国酬、g爵J®.醐aax-wMB涂渲W片昏邹迷朽.海爵啊善噬、2。。7、7(2)口56「158・『2架醐用»秘刖.排*S涂对Bwi渲H肄浇邹沏W.旃供汁噬噬满1997、37(8)003806・可®画浦曲OIE育面asffi渲弟^讲骄冬匕.渲弟肄浇噬满1997、11(4=44「47・【4JTUm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件工程论坛课程设计
- 水电站课程设计碾压
- 高校思维导图课程设计
- 燃气课程设计日记
- 电动绞车机课程设计
- 县级中医医院中医护理模式方案
- 2024-2030年中国老居家护理行业竞争格局与销售动态预测报告
- 2024-2030年中国磁控管行业发展现状及应用前景预测研究报告
- 2024-2030年中国痘痘贴行业竞争状况及消费需求预测研究报告
- 2024-2030年中国玻璃钢风机行业未来趋势与应用前景预测报告
- 集合论和逻辑
- 审查易系统操作指南
- 拼音四线三格A4打印版
- 机械专业职业生涯发展报告
- 当代世界经济与政治教案
- 超宽带无线通信技术在无人机领域的应用
- 2024年度医院中医生殖科带教计划课件
- 部编版道德与法治五年级上册中华民族一家亲第一课时课件
- 智能制造系统的优化与控制
- 中国银联行业报告
- 气浮机使用说明书
评论
0/150
提交评论