重庆十八中学2024届数学九上期末综合测试模拟试题含解析_第1页
重庆十八中学2024届数学九上期末综合测试模拟试题含解析_第2页
重庆十八中学2024届数学九上期末综合测试模拟试题含解析_第3页
重庆十八中学2024届数学九上期末综合测试模拟试题含解析_第4页
重庆十八中学2024届数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆十八中学2024届数学九上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,若,则的长是()A. B. C. D.2.在平面直角坐标系中,点在双曲线上,点A关于y轴的对称点B在双曲线上,则的值为A. B. C. D.3.如图,、两点在双曲线上,分别经过点、两点向、轴作垂线段,已知,则()A.6 B.5 C.4 D.34.化简的结果是A.-9 B.-3 C.±9 D.±35.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.486.已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是().A.1 B.2 C.3 D.47.如图所示的工件的主视图是()A. B. C. D.8.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:19.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是()A. B.C. D.二、填空题(每小题3分,共24分)11.若x=是一元二次方程的一个根,则n的值为____.12.如图,ΔABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边上一点,连结AD、DC、AP.已知AB=4,CP=1,Q是线段AP上一动点,连结BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则13.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____14.学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是___________.15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.16.如图,中,,是线段上的一个动点,以为直径画分别交于连接,则线段长度的最小值为__________.17.如图,面积为6的矩形的顶点在反比例函数的图像上,则__________.18.阅读下列材料,我们知道,因此将的分子分母同时乘以“”,分母就变成了4,即,从而可以达到对根式化简的目的,根据上述阅读材料解决问题:若,则代数式m5+2m4﹣2017m3+2016的值是_____.三、解答题(共66分)19.(10分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).20.(6分)在平面直角坐标系中,抛物线与轴的两个交点分别是、,为顶点.(1)求、的值和顶点的坐标;(2)在轴上是否存在点,使得是以为斜边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.21.(6分)如图1,已知抛物线y=x2+bx+c经过点A(3,0),点B(﹣1,0),与y轴负半轴交于点C,连接BC、AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,直线BC与抛物线的对称轴交于点K,将直线AC绕点C按顺时针方向旋转α°,直线AC在旋转过程中的对应直线A′C与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时点M的坐标.22.(8分)已知3是一元二次方程x2-2x+a=0的一个根,求a的值和方程的另一个根.23.(8分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.24.(8分)如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为;点的坐标为;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一点,的面积恰好等于正方形的面积,求点的坐标.25.(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB绕原点顺时针旋转后得到的△,并写出点的坐标;(2)在(1)的条件下,求线段在旋转过程中扫过的扇形的面积.26.(10分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.(1)求证:;(2)若,,求的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【题目详解】解:∵,∴,∵,∴,∵,∴.【题目点拨】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.2、B【分析】由点A(a,b)在双曲线上,可得ab=-2,由点A与点B关于y轴的对称,可得到点B的坐标,进而求出k,然后得出答案.【题目详解】解:∵点A(a,b)在双曲线上,

∴ab=-2;

又∵点A与点B关于y轴对称,

∴B(-a,b)

∵点B在双曲线上,

∴k=-ab=2;

∴=2-(-2)=4;

故选:D.【题目点拨】本题考查反比例函数图象上的点坐标的特征,关于y轴对称的点的坐标的特征.3、C【解题分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线的系数k,由此即可求出S1+S1.【题目详解】解:∵点A、B是双曲线上的点,分别经过A、B两点向x轴、y轴作垂线段,

则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=2,

∴S1+S1=2+2-1×1=2.

故选:C.【题目点拨】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.4、B【分析】根据二次根式的性质即可化简.【题目详解】=-3故选B.【题目点拨】此题主要考查二次根式的化简,解题的关键实数的性质.5、C【解题分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【题目详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为.故答案为:46.【题目点拨】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.6、B【分析】根据a的符号分类讨论,分别画出对应的图象,根据二次函数的图象逐一分析,找出所有情况下都正确的结论即可.【题目详解】解:当a>0时,即抛物线的开口向上∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;当a<0时,即抛物线的开口向下∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;综上所述:①错误;②正确;③正确;④错误,正确的有2个故选B.【题目点拨】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系和分类讨论的数学思想是解决此题的关键.7、B【解题分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B.8、A【解题分析】∵两个相似三角形的面积之比为1:4,

∴它们的相似比为1:1,(相似三角形的面积比等于相似比的平方)

∴它们的周长之比为1:1.

故选A.【题目点拨】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.9、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【题目详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【题目点拨】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.10、B【分析】观察二次函数图象,找出>0,>0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【题目详解】观察二次函数图象,发现:

抛物线的顶点坐标在第四象限,即,

∴,.

∵反比例函数中,

∴反比例函数图象在第一、三象限;

∵一次函数,,

∴一次函数的图象过第一、二、三象限.

故选:B.【题目点拨】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出,.解决该题型题目时,熟记各函数图象的性质是解题的关键.二、填空题(每小题3分,共24分)11、.【分析】把代入到一元二次方程中求出的值即可.【题目详解】解:∵是一元二次方程的一个根,∴,解得:,故答案为:.【题目点拨】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值,牢记方程的解满足方程,代入即可是解决此类问题的关键.12、1或12【题目详解】解:因为ΔABC内接于圆,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,∴AB=BC=CD=AD,∴ABCD是正方形∴AD//BC①点R在线段AD上,

∵AD∥BC,

∴∠ARB=∠PBR,∠RAQ=∠APB,

∵AP=BR,

∴△BAP≌ABR,

∴AR=BP,

在△AQR与△PQB中,∵∠RAQ=∠QPB∵ΔAQR≅ΔPQB∴BQ=QR∴BQ:QR=1:1②点R在线段CD上,此时△ABP≌△BCR,

∴∠BAP=∠CBR.

∵∠CBR+∠ABR=90°,

∴∠BAP+∠ABR=90°,

∴BQ是直角△ABP斜边上的高,∴BQ=∴QR=BR-BQ=5-2.4=2.6,∴BQ:QR=12故答案为:1或1213【题目点拨】本题考查正方形的性质和判定,全等三角形的性质和判定,勾股定理,中心对称的性质.解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13、8个【解题分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【题目详解】袋中小球的总个数是:2÷=8(个).故答案为8个.【题目点拨】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.14、1【分析】根据中位数的概念求解即可.【题目详解】这组数据按照从小到大的顺序排列为:86,87,1,89,89,

则这5个数的中位数为:1.

故答案为:1.【题目点拨】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15、【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【题目详解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm.∴点A′是斜边AB的中点,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋转所构成的扇形的弧长为:(cm).故答案为:.16、.【题目详解】解:如图,连接,过点作,垂足为∵,∴.由∵,∴.而,则.在中,,∴.所以当最小即半径最小时,线段长度取到最小值,故当时,线段长度最小.在中,,则此时的半径为1,∴.故答案为:.17、-1【分析】根据反比例函数系数k的几何意义可得|k|=1,再根据函数所在的象限确定k的值.【题目详解】解:∵反比例函数的图象经过面积为1的矩形OABC的顶点B,

∴|k|=1,k=±1,

∵反比例函数的图象经过第二象限,

∴k=-1.

故答案为:-1.【题目点拨】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.18、2016【分析】首先对m这个式子进行分母有理化,然后观察要求值的代数式进行拆分代入运算即可.【题目详解】∵===,∴m+1=,∴,∴,∴原式==2016.故答案为:2016.【题目点拨】本题考查了二次根式的分母有理化,代数式的求值,观察代数式的特点拆分代入是解题的关键.三、解答题(共66分)19、(1)60°;(2)米.【解题分析】(1)根据方位角的概念得出相应角的角度,再利用平行线的性质和三角形内角和进行计算即可求得答案;(2)作CD⊥AB于点D,得到两个直角三角形,再根据三角函数的定义和特殊角的三角函数值可求得AD、BD的长,相加即可求得A、B的距离.【题目详解】解:(1)由题意可得:∠MAB=75°,∠MAC=30°,∠NCB=45°,AM∥CN,∴∠BAC=75°−30°=45°,∠MAC=∠NAC=30°∴∠ACB=30°+45°=75°,∴∠ABC=180°−∠BAC−∠ACB=60°;(2)如图,作CD⊥AB于点D,在Rt△ACD中,AD=CD=AC∙sin45°=300×=150,在Rt△BCD中,BD=CDtan30°=150×=50,∴AB=AD+BD=150+50,答:两个凉亭A,B之间的距离为(150+50)米.【题目点拨】本题考查了解直角三角形的应用,在解决有关方位角的问题时,一般根据题意理清图形中各角的关系,有时所给的方位角不在三角形中,需要通过平行线的性质或互余的角等知识转化为所需要的角,解决第二问的关键是作CD⊥AB构造含特殊角的直角三角形.20、(1),,(-1,4);(2)在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入解方程组即可得到结论;

(2)过C作CE⊥y轴于E,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设,得到,根据相似三角形的性质即可得到结论.【题目详解】(1)把A(−3,0)、B(1,0)分别代入,,解得:,,则该抛物线的解析式为:,∵,所以顶点的坐标为(,);故答案为:,,顶点的坐标为(,);(2)如图1,过点作⊥轴于点,假设在轴上存在满足条件的点,设(0,),则,∵,∴,,,,由∠90得∠1∠290,又∵∠2∠390,∴∠3∠1,又∵∠CED∠DOA90,∴△∽△,∴,则,变形得,解得,.综合上述:在y轴上存在点(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形.【题目点拨】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.21、(1)y=x2﹣x﹣;(2)存在符合条件的点P,且坐标为(,)、(,)、(1,﹣)、(2,﹣);(3)点M的坐标是(2,﹣)或(1,﹣).【分析】(1)知道A、B两点坐标后,利用待定系数法可确定该抛物线的解析式.(2)此题中,以A、B、C、P为顶点的四边形可分作两部分,若该四边形的面积是△ABC面积的1.5倍,那么四边形中除△ABC以外部分的面积应是△ABC面积的一半,分三种情况:①当点P在x轴上方时,△ABP的面积应该是△ABC面积的一半,因此点P的纵坐标应该是点C纵坐标绝对值的一半,代入抛物线解析式中即可确定点P的坐标;②当点P在B、C段时,显然△BPC的面积要远小于△ABC面积的一半,此种情况不予考虑;③当点P在A、C段时,由A、C的长以及△ACP的面积可求出点P到直线AC的距离,首先在射线CK上取线段CD,使得CD的长等于点P到直线AC的距离,先求出过点D且平行于l1的直线解析式,这条直线与抛物线的交点即为符合条件的点P.(3)从题干的旋转条件来看,直线l1旋转的范围应该是直线AC、直线BC中间的部分,而△MCK的腰和底并不明确,所以分情况讨论:①CK=CM、②KC=KM、③MC=MK;求出点M的坐标.【题目详解】解:(1)如图1,∵点A(3,0),点B(﹣1,0),∴,解得,则该抛物线的解析式为:y=x2﹣x﹣;(2)易知OA=3、OB=1、OC=,则:S△ABC=AB•OC=×4×=2.①当点P在x轴上方时,由题意知:S△ABP=S△ABC,则:点P到x轴的距离等于点C到x轴距离的一半,即点P的纵坐标为;令y=x2﹣x﹣=,化简得:2x2﹣4x﹣9=0解得x=;∴P1(,)、P2(,);②当点P在抛物线的B、C段时,显然△BCP的面积要小于S△ABC,此种情况不合题意;③当点P在抛物线的A、C段时,S△ACP=AC•h=S△ABC=,则h=1;在射线CK上取点D,使得CD=h=1,过点D作直线DE∥AC,交y轴于点E,如图2;在Rt△CDE中,∠ECD=∠BCO=30°,CD=1,则CE=、OE=OC+CE=,点E(0,﹣)∴直线DE:y=x﹣,联立抛物线的解析式,有:,解得:或,∴P3(1,-)、P4(2,-);综上,存在符合条件的点P,坐标为(,),(,),(1,-),(2,-);(3)如图3,由(1)知:y=x2-x-=(x﹣1)2﹣,∴抛物线的对称轴x=1;①当KC=KM时,点C、M1关于抛物线的对称轴x=1对称,则点M1的坐标是(2,﹣);②KC=CM时,K(1,﹣2),KC=BC.则直线A′C与抛物线的另一交点M2与点B重合,M、C、K三点共线,不能构成三角形;③当MK=MC时,点D是CK的中点.∵∠OCA=60°,∠BCO=30°,∴∠BCA=90°,即BC⊥AC,则作线段KC的中垂线必平行AC且过点D,∴点M3与点P3(1,-)、P4(2,-)重合,综上所述,点M的坐标是(2,﹣)或(1,﹣).【题目点拨】该题考查了利用待定系数法确定函数解析式,图形面积的解法以及等腰三角形的判定和性质等重点知识;后两题涉及的情况较多,应分类进行讨论,容易漏解.22、a=-3;另一个根为-1.【分析】根据一元二次方程的解的定义把x=3代入x2-2x+a=0可求出a的值,然后把a的值代入方程得到x2-2x-3=0,再利用因式分解法解方程即可得到方程的另一根.【题目详解】解:设方程的另一个根为m,则解得:∴方程的另一个根为∴a=-13=-3.【题目点拨】本题主要考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.23、(1)见详解;(2)60°【分析】(1)先判断出△ABC是等边三角形,由等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BF,然后利用“边角边”证明即可;

(2)由△ACE≌△CBF,根据全等三角形对应角相等可得∠E=∠F,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.【题目详解】(1)证明:∵菱形,,∴是等边三角形,∴,,∵,∴,即,在和中,∵,∴.(2)解:∵,∴,∵,∴,∴,∵,∴.【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质等知识;熟记性质并确定出三角形全等的条件是解题的关键24、(1)5,;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论