版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码页码页/总共NUMPAGES总页数总页数页《圆周角的性质》[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突破难点[教学目标]:知识目标:能理解分三种情况证明圆周角定理的过程,向学生渗透化归思想。能力目标:使学生进一步体验通过观察可以发现数学问题,并通过猜想、类比、归纳可以解决问题,渗透分类转化思想。情感目标:注重激发学生的积极性,使他们勇于自主探索,乐于与人合作交流,体验探索的快乐和数学思维的美感,提高思维的品质。[教学过程]:一、以旧引新,看谁连的快屏显三个与圆有关的几何图形:(1)顶点在圆上,两边都和圆相交的角。(2)顶点在圆心的角。(3)圆上两点间的部分。要求学生将他们和相对应的概念进行连线。二、动手游戏,看谁找得多屏显游戏规则:1、拿出准备好的纸板,在圆上固定四个点a、b、c、d。2、用橡皮筋两两连接a、b、c、d四个点。3、在连结的图形中一共有多少个圆周角?4、比一比看哪个小组连得快,连得多,请各小组作好记录。5、完成后进行展示,持不同意见的小组可随时补充。(学生分小组合作完成,教师参与小组活动,给予指导,学生展示找出的圆周角。)三、提出问题,引入新课:问题1:这四大类个圆周角中,弧所对的圆周角有多少个?问题2:弧adc所对的圆周角又有几个?分别是什么?问题3:为什么弧所对的圆周角有两个?而弧adc所对的圆周角却只有一个?学生活动:学生进行小组讨论、交流教师活动:巡视、点拨、评价、板书[板书]:性质1:一条弧所对的圆周角有无数个,而每个圆周角所对的弧是唯一确定的。四、动手实验,看谁猜得对1、问题启示:圆周角和圆心角是不同的角,并且有不同的性质,但只要它们对着同一条弧,彼此之间就有着一定的关系。究竟两者之间存在着什么关系呢?下面请看图形(电脑展示)学生活动:小组实验,在白纸上任意画一个圆,呼出同弧所对的一个圆心角和一个圆周角。利用量角器量圆周角和圆心角的度数,并填写实验报告。教师活动:巡视、点拨、鼓励学生大胆猜想,激发学生的探索精神。(师生互动,每组派一名代表上台展示实验结果,教师用几何画板软件动态测量出∠aob和∠acb的度数,进一步验证学生的猜想。五、细心观察,初步探索:师利用几何画板的拖动功能和折纸的方法,直观形象地演示圆心角和圆周角的位置关系,让系饿感受圆心角和圆周角有且只有三种位置关系:圆心在圆周角的一条边上;圆心在圆周角的内部;圆心在圆周角的外部。电脑演示:固定圆周角的一边,使另一边绕着圆周角的顶点运动,同时将学生画的不同情况的图形进行展示。引导学生进一步类比、归纳,逐步渗透分类转化的思想,为后面分三种情况证明打好基础。(通过这种形象直观的教学,使学生从运动的观点理解知识,通过观察,在探索图形变换活动中,发展几何直觉,为分情况说理奠定基础。)六、合作探索,突
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英雄之旅课程设计理念
- 酒店行业销售工作总结
- IT行业员工薪酬福利制度优化
- 2025年高考历史一轮复习之世界多极化
- 如何将愿景转化为年度工作计划
- 2023-2024学年福建省福州市福清市高一(下)期中语文试卷
- 汉字偏旁部首名称大全表
- 文化行业市场拓展总结
- 镜子销售工作总结
- 2024年美术教案(集锦篇)
- 特种设备“日管控、周排查、月调度”表格
- 重点关爱学生帮扶活动记录表
- 2021年10月自考00850广告设计基础试题及答案含解析
- 结构化面试表格
- 地热能资源的潜力及在能源领域中的应用前景
- 2023版:美国眼科学会青光眼治疗指南(全文)
- 家长会课件:小学寒假家长会课件
- 变刚度单孔手术机器人系统设计方法及主从控制策略
- 儿童室外游戏机创业计划书
- 2024年浙江宁波永耀供电服务有限公司招聘笔试参考题库含答案解析
- 温州食堂承包策划方案
评论
0/150
提交评论