初中数学知识点总结三篇_第1页
初中数学知识点总结三篇_第2页
初中数学知识点总结三篇_第3页
初中数学知识点总结三篇_第4页
初中数学知识点总结三篇_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1初中数学知识点总结三篇当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。什么样的总结才是有效的呢?以下是我编写整理的工作总结书范文,仅供参考,希望能够帮助到大家。

初中数学知识点总结篇一1、定义

把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(―x,―y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,―y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(―x,y)

大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

1、一个图形的面积等于它的各部分面积的和;

2、两个全等图形的面积相等;

5、相似三角形的面积比等于相似比的平方;

7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对x求积分。

初中数学知识点总结篇二1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。

2、一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。

说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。

(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。

(3)当b=0,k0时,y=b仍是一次函数。

(4)当b=0,k=0时,它不是一次函数。

3、一次函数的图象(三步画图象)

由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(—,0)。但也不必一定选取这两个特殊点。画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。

4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)

(3)b的正、负决定直线与y轴交点的'位置;

①当b0时,直线与y轴交于正半轴上;

②当b0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

5、确定正比例函数及一次函数表达式的条件

6、待定系数法

7、用待定系数法确定一次函数表达式的一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式.

8、本章思想方法

(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。

(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。

单项式与多项式

仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式

单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数

当一个单项式的系数是1或-1时,“1”通常省略不写

一个单项式中,所有字母的指数的和叫做这个单项式的次数

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项

1、多项式

有有限个单项式的代数和组成的式子,叫做多项式

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项

单项式可以看作是多项式的特例

把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中最高次项的次数,就称为这个多项式的次数

2、多项式的值

任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的.式子

3、多项式的恒等

对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)

性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)

性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等

4、一元多项式的根

一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根

多项式的加、减法,乘法

1、多项式的加、减法

2、多项式的乘法

单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式

3、多项式的乘法

多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加

常用乘法公式

公式i平方差公式

(a+b)(a-b)=a^2-b^2

两个数的和与这两个数的差的积等于这两个数的平方差

公式ii完全平方公式

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

两数(或两式)和(或差)的平方,等于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论