版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海西市重点中学数学九年级第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A. B. C. D.22.当取下列何值时,关于的一元二次方程有两个相等的实数根()A.1. B.2 C.4. D.3.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.64.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为()A.70° B.80° C.90° D.100°5.如图,AB、CD相交于点O,AD∥CB,若AO=2,BO=3,CD=6,则CO等于()A.2.4 B.3 C.3.6 D.46.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.7.如图,△ABC的顶点在网格的格点上,则tanA的值为()A. B. C. D.8.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m9.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4 B.3 C.2 D.110.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10π B.C.π D.π二、填空题(每小题3分,共24分)11.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)12.抛物线y=x2+2x+3的顶点坐标是_____________.13.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).14.如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,则线段BF=______.15.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.16.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为_______.17.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________18.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.三、解答题(共66分)19.(10分)如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=1.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.20.(6分)如图,在△ABC中,∠B=45°,AC=5,cosC=,AD是BC边上的高线.(1)求AD的长;(2)求△ABC的面积.21.(6分)甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)22.(8分)解方程:(1)x2﹣2x+1=0(2)2x2﹣3x+1=023.(8分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AC=8,CE=4,求弧BD的长.(结果保留π)24.(8分)在锐角三角形中,已知,,的面积为,求的余弦值.25.(10分)(1)解方程:(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.26.(10分)如果是关于x的一元二次方程;(1)求m的值;(2)判断此一元二次方程的根的情况,如果有实数根则求出根,如果没有说明理由则可.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】连接AD∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,则圆的半径是.故选B.点睛:连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.2、A【分析】根据一元二次方程的判别式判断即可.【题目详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【题目点拨】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.3、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【题目详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【题目点拨】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.4、D【分析】先根据垂直平分线的特点得出∠B=∠DAB,∠C=∠EAC,然后根据△ABC的内角和及∠DAE的大小,可推导出∠DAB+∠EAC的大小,从而得出∠BAC的大小.【题目详解】如下图∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.【题目点拨】本题考查垂直平分线的性质,解题关键是利用整体思想,得出∠DAB+∠EAC=80°.5、C【分析】由平行线分线段成比例定理,得到;利用AO、BO、CD的长度,求出CO的长度,即可解决问题.【题目详解】如图,∵AD∥CB,
∴;
∵AO=2,BO=3,CD=6,
∴,解得:CO=3.6,
故选C.【题目点拨】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..6、A【分析】首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【题目详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【题目点拨】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.7、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【题目详解】解:如图作CD⊥AB于D,CD=,AD=2,tanA=,故选A.【题目点拨】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8、A【分析】根据BC的长度和的值计算出AC的长度即可解答.【题目详解】解:因为,又BC=30,所以,,解得:AC=75m,所以,故选A.【题目点拨】本题考查了正切三角函数,熟练掌握是解题的关键.9、B【解题分析】根据中心对称图形的概念判断即可.【题目详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.故选B.【题目点拨】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.10、C【题目详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=.故选C.二、填空题(每小题3分,共24分)11、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【题目详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【题目点拨】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.12、(﹣1,2)【题目详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【题目点拨】本题考查二次函数的顶点坐标.13、乙【分析】根据方差越小数据越稳定即可求解.【题目详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【题目点拨】本题考查方差的性质,方差越小数据越稳定.14、【分析】连接,延长BA,CD交于点,根据∠BAD=∠BCD=90°可得点A、B、C、D四点共圆,根据圆周角定理可得,根据DE⊥AC可证明△AED∽△BCD,可得,利用勾股定理可求出AD的长,由∠ABC=45°可得△ABG为等腰直角三角形,进而可得△ADG是等腰直角三角形,即可求出AG、DG的长,根据BC=2CD可求出CD、BC、AB的长,根据,可证明△AED∽△FAD,根据相似三角形的性质可求出AF的长,即可求出BF的长.【题目详解】连接,延长BA,CD交于点,∵,∴四点共圆,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【题目点拨】本题考查圆周角定理、勾股定理及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.15、【题目详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案为.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.16、.【解题分析】试题分析:列表或画树状图得出所有等可能的情况数,找出舟舟和嘉嘉同坐2号车的情况数,即可求出所求的概率:列表如下:1
2
1
(1,1)
(2,1)
2
(1,2)
(2,2)
∵所有等可能的情况有4种,其中舟舟和嘉嘉同坐2号车的的情况有1种,∴两人同坐3号车的概率P=.考点:1.列表法或树状图法;2.概率.17、【分析】根据二次函数图像和性质得a0,c=3,即可设出解析式.【题目详解】解:根据题意可知a0,c=3,故二次函数解析式可以是【题目点拨】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.18、1.【题目详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=1,∵在▱ABCD中AB=CD.∴CD=1.故答案为:1【题目点拨】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.三、解答题(共66分)19、(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<时,存在2个矩形EFGH;③当m=时,存在1个矩形EFGH;④当<m≤时,存在2个矩形EFGH;⑤当<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【题目详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)
(2)∵O到菱形边的距离为,当⊙O与AB相切时AE=,当过点A,C时,⊙O与AB交于A,E两点,此时AE=×2=,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<时,如图,存在2个矩形EFGH;③当m=时,如图,存在1个矩形EFGH;④当<m≤时,如图,存在2个矩形EFGH;⑤当<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【题目点拨】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.20、(1)AD=2;(2)S△ABC=1.【分析】(1)由高的定义可得出∠ADC=∠ADB=90°,在Rt△ACD中,由AC的长及cosC的值可求出CD的长,再利用勾股定理即可求出AD的长;(2)由∠B,∠ADB的度数可求出∠BAD的度数,即可得出∠B=∠BAD,利用等角对等边可得出BD的长,再利用三角形的面积公式即可求出△ABC的面积.【题目详解】解:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ACD中,AC=5,cosC=,∴CD=AC•cosC=3,∴AD==2.(2)∵∠B=25°,∠ADB=90°,∴∠BAD=90°﹣∠B=25°,∴∠B=∠BAD,∴BD=AD=2,∴S△ABC=AD•BC=×2×(2+3)=1.【题目点拨】本题考查了解直角三角形、勾股定理、等腰三角形的性质以及三角形的面积,解题的关键是:(1)
通过解直角三角形及勾股定理,求出CD、AD的长;(2)
利用等腰三角形的性质,找出BD的长.21、.【解题分析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可.【题目详解】画树状图为:由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种,所以甲、丙两人成为比赛选手的概率为=.【题目点拨】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)x1=x2=1;(2)x1=1,x2=【分析】(1)利用配方法解一元二次方程即可得出答案;(2)利用十字相乘法解一元二次方程即可得出答案.【题目详解】解:(1)x2﹣2x+1=0(x-1)2=0∴x1=x2=1(2)2x2﹣3x+1=0(2x-1)(x-1)=0∴x1=1,x2=【题目点拨】本题考查的是解一元二次方程,解一元二次方程主要有以下几种解法:直接开方法、配方法、公式法和因式分解法.23、(1)见解析;(2)【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)作OG⊥AE,知AG=CG=AC=4,证四边形ODEG是矩形,得出OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=192,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.【题目详解】(1)证明:连接OD,如图1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)解:作OG⊥AE于点G,连接BD,如图2所示:则AG=CG=AC=4,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=4+4=8,∠DOG=90°,∴AB=2OA=16,∵AC=8,CE=4,∴AE=AC+CE=12,∵∠DAE=∠BAD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房屋交易合规检查合同:二手房交易合规检查协议2篇
- 2024年室内装饰品购销协议3篇
- 2024年修订:采购岗位保密协议2篇
- 二零二四年度区块链应用场景落地居间合同2篇
- 2024年网球场使用权转让合同2篇
- 2024年联合研发项目保密协议3篇
- 2024年度建筑公司建筑工程设计合同2篇
- 2024年无偿汽车租赁协议2篇
- 房屋拆迁补偿合同2024年度详细条款2篇
- 2024年人防工程质量检测合同2篇
- 《纪录片创作理论与实践》- 教学大纲(48学时)
- 发电厂锅炉培训
- 机构员工劳动合同范例
- 西藏-2023年-社区工作者-上半年笔试真题卷
- 工程总承包施工方案
- 旅游岗位招聘笔试题与参考答案(某大型国企)2025年
- 2024年江苏省扬州市中考语文试卷
- 2024-2030年中国玄武岩行业发展规模及投资可行性分析报告
- 纪检干部业务培训
- 网络信息安全科普
- 体育教师招聘笔试题及解答2025年
评论
0/150
提交评论