版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届成都市重点中学数学九年级第一学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.2.已知点都在双曲线上,且,则的取值范围是()A. B. C. D.3.在同一直角坐标系中,二次函数与一次函数的大致图象可能()A. B.C. D.4.如图,正方形的四个顶点在半径为的大圆圆周上,四条边都与小圆都相切,过圆心,且,则图中阴影部分的面积是()A. B. C. D.5.如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若,以所在直线为轴,抛物线的顶点在轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为()A. B.C. D.6.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.7.如图,是的直径,,是的两条弦,,连接,若,则的度数是()A.10° B.20° C.30° D.40°8.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯9.用10长的铝材制成一个矩形窗框,使它的面积为6.若设它的一条边长为,则根据题意可列出关于的方程为()A. B. C. D.10.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.二、填空题(每小题3分,共24分)11.如图,已知点D,E是半圆O上的三等分点,C是弧DE上的一个动点,连结AC和BC,点I是△ABC的内心,若⊙O的半径为3,当点C从点D运动到点E时,点I随之运动形成的路径长是_____.12.如图所示的弧三角形,又叫莱洛三角形,是机械学家莱洛首先进行研究的.弧三角形是这样画的:先画一个正三角,然后分别以三个顶点为圆心,边长长为半径画弧得到的三角形.若中间正三角形的边长是10,则这个莱洛三角形的周长是____________.13.如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为____________________________.14.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).15.在比例尺为1:3000000的地图上,测得AB两地间的图上距离为5厘米,则AB两地间的实际距离是______千米.16.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=_____.17.如图,在平面直角坐标系中,矩形的两边在其坐标轴上,以轴上的某一点为位似中心作矩形,使它与矩形位似,且点,的坐标分别为,,则点的坐标为__________.18.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.三、解答题(共66分)19.(10分)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.20.(6分)按要求解答下列各小题.(1)解方程:;(2)计算:.21.(6分)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.22.(8分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?23.(8分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.(1)求出k与b的值,并指出x的取值范围?(2)为了使每月获得价格利润1920元,商品价格应定为多少元?(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?24.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.25.(10分)已知二次函数的图象经过点A(0,4),B(2,m).(1)求二次函数图象的对称轴.(2)求m的值.26.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.
参考答案一、选择题(每小题3分,共30分)1、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】亿=3.0924×1012,
故选:B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【分析】分别将A,B两点代入双曲线解析式,表示出和,然后根据列出不等式,求出m的取值范围.【题目详解】解:将A(-1,y1),B(2,y2)两点分别代入双曲线,得,,∵y1>y2,,解得,故选:D.【题目点拨】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.3、C【分析】先分别根据二次函数和一次函数的图象得出a、c的符号,再根据两个函数的图象与y轴的交点重合,为点逐项判断即可.【题目详解】A、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号不一致,则此项不符题意B、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号不一致,则此项不符题意C、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号一致,且都经过点,则此项符合题意D、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号一致,但与y轴的交点不是同一点,则此项不符题意故选:C.【题目点拨】本题考查了一次函数与二次函数的图象综合,熟练掌握一次函数与二次函数的图象特征是解题关键.4、C【分析】由于圆是中心对称图形,则阴影部分的面积等于大圆的四分之一,即可求解.【题目详解】解:由于圆是中心对称图形,则阴影部分的面积等于大圆的四分之一.故阴影部分的面积=.故选:C.【题目点拨】本题利用了圆是中心对称图形,圆面积公式及概率的计算公式求解,熟练掌握公式是本题的解题关键.5、A【分析】首先设抛物线的解析式y=ax2+bx+c,由题意可以知道A(-30,0)B(30,0)C(0,15)代入即可得到解析式.【题目详解】解:设此桥上半部分所在抛物线的解析式为y=ax2+bx+c∵AB=60OC=15∴A(-30,0)B(30,0)C(0,15)将A、B、C代入y=ax2+bx+c中得到y=-x2+15故选A【题目点拨】此题主要考查了二次函数的实际应用问题,主要培养学生用数学知识解决实际问题的能力.6、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【题目详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.【题目点拨】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.7、D【分析】连接AD,由AB是⊙O的直径及CD⊥AB可得出弧BC=弧BD,进而可得出∠BAD=∠BAC,利用圆周角定理可得出∠BOD的度数.【题目详解】连接AD,如图所示:
∵AB是⊙O的直径,CD⊥AB,
∴弧BC=弧BD,
∴∠BAD=∠BAC=20°.
∴∠BOD=2∠BAD=40°,
故选:D.【题目点拨】此题考查了圆周角定理以及垂径定理.此题难度不大,利用圆周角定理求出∠BOD的度数是解题的关键.8、A【解题分析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.【题目点拨】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、A【分析】一边长为xm,则另外一边长为(5﹣x)m,根据它的面积为1m2,即可列出方程式.【题目详解】一边长为xm,则另外一边长为(5﹣x)m,由题意得:x(5﹣x)=1.故选A.【题目点拨】本题考查了由实际问题抽象出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.10、A【解题分析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.二、填空题(每小题3分,共24分)11、π.【分析】连接AI,BI,作OT⊥AB交⊙O于T,连接AT,TB,以T为圆心,TA为半径作⊙T,在优弧AB上取一点G,连接AG,BG.证明∠AIB+∠G=180°,推出A,I,B,G四点共圆,【题目详解】如图,连接AI,BI,作OT⊥AB交⊙O于T,连接AT,TB,以T为圆心,TA为半径作⊙T,在优弧AB上取一点G,连接AG,BG.推出点I的运动轨迹是即可解决问题.∵AB是直径,∴∠ACB=90°,∵I是△ABC的内心,∴∠AIB=135°,∵OT⊥AB,OA=OB,∴TA=TB,∠ATB=90°,∴∠AGB=∠ATB=45°,∴∠AIB+∠G=180°,∴A,I,B,G四点共圆,∴点I的运动轨迹是,由题意,∴∠MTM=30°,易知TA=TM=3,∴点I随之运动形成的路径长是,故答案为.【题目点拨】本题考查了轨迹,垂径定理、圆周角定理、三角形的内心和等边三角形的性质等知识,解题的关键是正确寻找点的运动轨迹.12、10π【分析】根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【题目详解】解:如图:
∵△ABC是正三角形,
∴∠BAC=60°,
∴的长为:,
∴莱洛三角形的周长=.故答案为:.【题目点拨】本题考查的是正多边形和圆的知识,理解弧三角形的概念、掌握正多边形的中心角的求法是解题的关键.13、【分析】连接EB,构造直角三角形,设AE为,则,利用勾股定理得到有关的一元一次方程,即可求出ED的长.【题目详解】连接EB,
∵EF垂直平分BD,
∴ED=EB,
设,则,
在Rt△AEB中,
,
即:,
解得:.∴,
故答案为:.【题目点拨】本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键.14、【分析】直接利用黄金分割的定义求解.【题目详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【题目点拨】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.15、150【分析】设实际距离为x千米,根据比例尺=图上距离:实际距离计算即可得答案.【题目详解】设实际距离为x千米,5厘米=0.00005千米,∵比例尺为1:3000000,图上距离为5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案为:150【题目点拨】本题考查了比例尺的定义,能够根据比例尺由图上距离正确计算实际距离是解题关键,注意单位的换算.16、1.【分析】根据题意,想要求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所构成的矩形的面积即可,而矩形的面积为双曲线y=的系数k,由此即可求解.【题目详解】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=1.故答案为1.【题目点拨】本题主要考查反比例函数系数k的几何意义,解题的关键是熟练掌握根据反比例函数系数k的几何意义求出矩形的面积.17、【分析】首先求出位似图形的位似中心坐标,然后即可得出点D的坐标.【题目详解】连接BF交轴于P,如图所示:∵矩形和矩形,点,的坐标分别为,,∴点C的坐标为∵BC∥GF∴∴GP=1,PC=2,OP=3∴点P即为其位似中心∴OD=6∴点D坐标为故答案为:.【题目点拨】此题主要考查位似图形的性质,熟练掌握,即可解题.18、-1.【分析】根据x=2y﹣1,可得:x﹣2y=﹣1,据此求出代数式4x﹣8y+9的值是多少即可.【题目详解】∵x=2y﹣1,∴x﹣2y=﹣1,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【题目点拨】本题考查的是求代数式的值,解题关键是由x=2y﹣1得出x﹣2y=﹣1.三、解答题(共66分)19、(1)详见解析;(2)详见解析【分析】(1)连接OA,由等边三角形性质和圆周角定理可得∠AOC的度数,从而得到∠OCA,再由AP=AC得到∠PAC,从而算出∠PAO的度数;(2由切线长定理得PA,PB,从而说明PO垂直平分AB,得到CB=CA,再根据∠ABC=60°,从而判定等边三角形.【题目详解】解:(1)证明:连接.又是半径,是的切线.(2)证明:连接是的切线,是的垂直平分线.是等边三角形.【题目点拨】本题考查了外接圆的性质,垂直平分线的判定和性质,切线的性质,等腰三角形的性质,等边三角形的判定,此题难度适中,解题的关键是准确作出辅助线,从而进行证明.20、(1);;(2).【分析】(1)去括号整理后利用因式分解法解方程即可;
(2)直接利用特殊角的三角函数值代入求出答案.【题目详解】(1)去括号得:移项合并得:因式分解得:即:或∴;(2).【题目点拨】本题考查了解一元二次方程-因式分解法,特殊角的三角函数值,正确分解因式、熟记特殊角的三角函数值是解题关键.21、依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.【解题分析】(1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.(2)先根据HL得出△CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=∠COD,再证得DE为⊙O的切线即可【题目详解】如图所示,依题意画出图形G为⊙O,如图所示(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°在Rt△CDF和Rt△CMF中,∴△CDF≌△CMF(HL),∴DF=MF,∴BC为弦DM的垂直平分线∴BC为⊙O的直径,连接OD∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE为⊙O的切线.∴直线DE与图形G的公共点个数为1个.【题目点拨】本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.22、定价为57.5元时,所获利润最大,最大利润为6125元.【分析】设所获利润为元,每件降价元,先求出降价后的每件利润和销量,再根据“利润=每件利润销量”列出等式,然后根据二次函数的性质求解即可.【题目详解】设所获利润为元,每件降价元则降价后的每件利润为元,每星期销量为件由利润公式得:整理得:由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小故当时,y取得最大值,最大值为6125元即定价为:元时,所获利润最大,最大利润为6125元.【题目点拨】本题考查了二次函数的应用,依据题意正确得出函数的关系式是解题关键.23、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.【分析】(1)根据待定系数法求解即可;根据单价不低于进价(16元)和销售件数y≥0可得关于x的不等式组,解不等式组即得x的取值范围;(2)根据每件的利润×销售量=1,可得关于x的方程,解方程即可求出结果;(3)设每月利润为W元,根据W=每件的利润×销售量可得W与x的函数关系式,然后根据二次函数的性质解答即可.【题目详解】解:(1)由题意,得:,解得:,∴y=﹣30x+960,∵y≥0,∴﹣30x+960≥0,解得:x≤32,又∵x≥16,∴x的取值范围是:16≤x≤32;答:k=﹣30,b=960,x取值范围为:16≤x≤32;(2)由题意,得:(﹣30x+960)(x﹣16)=1,解得:x1=x2=24,答:商品的定价为24元;(3)设每月利润为W元,由题意,得:W=(﹣30x+960)(x﹣16)=﹣30(x﹣24)2+1.∵﹣30<0,∴当x=24时,W最大=1.答:商品价格应定为24元,最大利润是1元.【题目点拨】本题是方程和函数的应用题,主要考查了待定系数法求一次函数的解析式、一元二次方程的解法和二次函数的性质等知识,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题的关键.24、(1)CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC,证明详见解析;(3).【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,再根据直角三角形斜边上中线的性质即可得到OC的长.【题目详解】(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编版二年级上册《道德与法治》全册教案
- 农、林专用仪器账务处理实例-记账实操
- 2024年一季度碳交易市场运行与政策盘点-双碳政策护航碳市场健康发展
- 介绍英文足球课件
- 2023年宁泌泰胶囊项目评价分析报告
- 2023年工具油项目评估分析报告
- 2024年紫外线强度观测仪器项目评价分析报告
- 2019粤教版 高中美术 选择性必修3 雕塑《第一单元 初探雕塑艺术》大单元整体教学设计2020课标
- 2024届河北省衡水十三中高三下学期期终考前模拟数学试题
- 餐饮合作经营合同协议书范本
- 18.《富饶的西沙群岛》课件
- 青岛 数学 三年级 上册 第7单元《简单的时间计算》课件
- 第一章第三节《氧化还原反应》第一课时高一上学期化学人教版(2019)必修第一册
- 高三政治月考试卷讲评
- 期中模拟测试卷1(试题)-2024-2025学年五年级上册数学(福建)
- 2024-2030年少儿艺术培训行业市场发展分析及发展前景与投资机会研究报告
- 期中模拟试卷(1-4单元)(试题)-2024-2025学年四年级上册数学苏教版
- 一年级拼音教学-(研讨讲座)
- 体育大单元教学计划(18课时)
- 磁共振MRI对比剂
- 2024年江苏地区“三新”供电服务公司招聘320人(第二批)高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论