山东省济宁市职业第一中学高二数学文期末试卷含解析_第1页
山东省济宁市职业第一中学高二数学文期末试卷含解析_第2页
山东省济宁市职业第一中学高二数学文期末试卷含解析_第3页
山东省济宁市职业第一中学高二数学文期末试卷含解析_第4页
山东省济宁市职业第一中学高二数学文期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济宁市职业第一中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知直线与圆相切,且与直线平行,则直线的方程是(

) A.

B.或 C.

D.或参考答案:B2.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若α⊥γ,β⊥γ,则α∥β B.若m⊥α,n⊥α,则m∥nC.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β参考答案:B【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:若α⊥γ,β⊥γ,则α与β相交或平行,故A错误;若m⊥α,n⊥α,则由直线与平面垂直的性质得m∥n,故B正确;若m∥α,n∥α,则m与n相交、平行或异面,故C错误;若m∥α,m∥β,则α与β相交或平行,故D错误.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.3.给出下列四个推导过程:①∵a,b∈R+,∴()+()≥2=2;②∵x,y∈R+,∴lgx+lgy≥2;③∵a∈R,a≠0,∴()+a≥2=4;④∵x,y∈R,xy<0,∴()+()=﹣[(﹣())+(﹣())]≤﹣2=﹣2.其中正确的是()A.①② B.②③ C.③④ D.①④参考答案:D【考点】基本不等式.【专题】不等式的解法及应用.【分析】基本不等式a+b≥2的成立条件是a>0,b>0,然后判断即可【解答】解:对于①∵a,b∈R+,∴()+()≥2=2,当且仅当a=b时取等号,故①正确,对于②∵x,y∈R+,但是lgx,lgy不一定大于0,故不能用基本不等式,故②错误,对于③∵a∈R,a≠0,∴()+a≥2=4;成立的条件是a>0,故③错误,对于④x,y∈R,xy<0,∴()+()=﹣[(﹣())+(﹣())]≤﹣2=﹣2.当且仅当x+y=0时取等号,故④正确.故选:D【点评】本题主要考查了基本不等式的性质,属于基础题,4.下列求导运算正确的是(

)A.

B.C.=

D.

参考答案:B5.若直线与曲线有两个不同的公共点,则实数的取值范围是(

)A.

B.

C.

D.参考答案:B由整理可得:,且,即表示以为圆心,为半径的圆位于直线下方的部分,直线表示斜率为的直线系,如图所示,考查满足题意的临界条件:当直线经过点时:,当直线与圆相切时,圆心到直线的距离等于半径,即:,解得:,直线经过点时,,结合题中的临界条件可知:实数的取值范围是.本题选择B选项.

6.等差数列中,已知为(

)A

48

B

49

C

50

D

51参考答案:C7.

()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形参考答案:D略8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么为(

)A.恰有1只坏的概率

B.恰有2只好的概率C.4只全是好的概率

D.至多2只坏的概率参考答案:D略9.设,则“”是“”的

)A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:B10.已知函数的图像与轴切于点,则的极大值、极小值分别为(

).A.

,0

B.0,

C.

,0

D.0,参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若变量x、y满足约束条件,则z=x﹣2y的最大值为.参考答案:3【考点】简单线性规划.【分析】先画出满足约束条件的可行域,并求出各角点的坐标,然后代入目标函数,即可求出目标函数z=x﹣2y的最大值.【解答】解:满足约束条件的可行域如下图所示:由图可知,当x=1,y=﹣1时,z=x﹣2y取最大值3故答案为:312.若向量,,,满足条件,则

.参考答案:.13.是的导函数,则的值是 参考答案:114.在的二项展开式中,的系数为_____参考答案:-84【分析】先求出展开式的通项公式为,再令的幂指数等于3求出的值,即可求得的系数.【详解】二项式的展开式的通项公式为.令,解得,展开式中的系数为,故答案为:-84【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.15.已知某几何体的三视图如图所示,则该几何体的体积为

,表面积为

.参考答案:,如图所示,在长宽高分别为2,2,1的长方体中,三视图对应的几何体为图中的四棱锥,其中点P为棱的中点,其体积,考查各个面的面积:,,,等腰△PAD中,AD=2,,则其面积为:,则其表面积为:.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.16.设是定义在R上的函数,其导函数为,若,则不等式(其中e为自然对数的底数)的解集为__________.参考答案:.【分析】由,构造新函数,求导,利用已知的不等式,可以判断出函数的单调性,从而利用单调性求出不等式的解集.【详解】,构造新函数,且,不等式变为,,由已知,所以是上的减函数,因为,所以,因此不等式(其中为自然对数的底数)的解集为.【点睛】本题考查了通过构造函数求解不等式的解集问题.解决本题的关键是根据所求不等式的特征进行恰当的变形,构造新函数,利用已知的不等式,可以判断出新函数的单调性,从而解决本问题.17.在△ABC中,已知,则△ABC的形状为________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.参考答案:【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定.【分析】(1)由已知得PQ⊥AD,BQ⊥AD,由此能证明平面PQB⊥平面PAD.(2)以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,利用向量法能求出存在点M为线段PC靠近P的三等分点满足题意.【解答】(1)证明:∵PA=PD,Q为AD的中点,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,又PQ∩BQ=Q,∴AD⊥平面PQB,又∵AD?平面PAD,∴平面PQB⊥平面PAD.(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,如图则Q(0,0,0),P(0,0,),B(0,,0),C(﹣2,,0)设,0<λ<1,则M(﹣2λ,,),平面CBQ的一个法向量=(0,0,1),设平面MBQ的法向量为=(x,y,z),由,得=(,0,),∵二面角M﹣BQ﹣C的大小为60°,∴cos60°=|cos<>|=||=,解得,∴=,∴存在点M为线段PC靠近P的三等分点满足题意.【点评】本题考查平面与平面垂直的证明,考查满足条件的点是否存在的判断与证明,解题时要认真审题,注意空间思维能力的培养.19.已知点(1,)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)﹣c.数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn﹣Sn﹣1=+(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若数列{}前n项和为Tn,问Tn>的最小正整数n是多少?参考答案:【考点】数列与不等式的综合;等差数列的通项公式;等比数列的通项公式.【分析】(1)先根据点(1,)在f(x)=ax上求出a的值,从而确定函数f(x)的解析式,再由等比数列{an}的前n项和为f(n)﹣c求出数列{an}的公比和首项,得到数列{an}的通项公式;由数列{bn}的前n项和Sn满足Sn﹣Sn﹣1=可得到数列{}构成一个首项为1公差为1的等差数列,进而得到数列{}的通项公式,再由bn=Sn﹣Sn﹣1可确定{bn}的通项公式.(2)先表示出Tn再利用裂项法求得的表达式Tn,根据Tn>求得n.【解答】解:(1)由已知f(1)=a=,∴f(x)=,等比数列{an}的前n项和为f(n)﹣c=c,∴a1=f(1)=﹣c,a2=[f(2)﹣c]﹣[f(1)﹣c]=﹣,a3=[f(3)﹣c]﹣[f(2)﹣c]=﹣数列{an}是等比数列,应有=q,解得c=1,q=.∴首项a1=f(1)=﹣c=∴等比数列{an}的通项公式为=.∵Sn﹣Sn﹣1==(n≥2)又bn>0,>0,∴=1;∴数列{}构成一个首项为1,公差为1的等差数列,∴=1+(n﹣1)×1=n

∴Sn=n2当n=1时,b1=S1=1,当n≥2时,bn=Sn﹣Sn﹣1=n2﹣(n﹣1)2=2n﹣1又n=1时也适合上式,∴{bn}的通项公式bn=2n﹣1.(2)==∴==由,得,,故满足的最小正整数为112.20.(1)已知抛物线的顶点在原点,准线方程为x=﹣,求抛物线的标准方程;(2)已知双曲线的焦点在x轴上,且过点(,﹣),(,),求双曲线的标准方程.参考答案:【考点】双曲线的标准方程;抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】(1)设抛物线方程为y2=2px(p>0),根据题意建立关于p的方程,解之可得p=,得到抛物线方程;(2)设双曲线方程为mx2﹣ny2=1(m>0,n>0),代入点(,﹣),(,),可得方程组,求出m,n,即可求双曲线的标准方程.【解答】解:(1)由题意,设抛物线的标准方程为y2=2px(p>0),∵抛物线的准线方程为x=﹣,∴=,解得p=,故所求抛物线的标准方程为y2=x.(2)设双曲线方程为mx2﹣ny2=1(m>0,n>0),代入点(,﹣),(,),可得,∴m=1,n=,∴双曲线的标准方程为x2﹣y2=1.【点评】本题给出抛物线的准线,求抛物线的标准方程,着重考查了抛物线的定义与标准方程的知识,考查双曲线方程,属于基础题.21.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为12千元,预测该家庭的月储蓄.附:线性回归方程中,,.其中,为样本平均值,线性回归方程也可写为=x+.参考答案:【考点】线性回归方程.【分析】(Ⅰ)由题意计算、,求出回归系数、,写出回归方程;(Ⅱ)由回归系数>0,判断是正相关;(Ⅲ)计算x=12时的值,即可预测该家庭的月储蓄.【解答】解:(Ⅰ)由题意知,n=10,=×80=8,=×20=2,∴==0.3,=﹣=2﹣0.3×8=﹣0.4,∴回归方程为=0.3x﹣0.4;…(Ⅱ)由于回归系数=0.3>0,∴变量y与x之间是正相关;…(Ⅲ))x=12时,=0.3×12﹣0.4=3.2(千元),即某家庭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论