安徽省淮北市马桥中学高二数学文摸底试卷含解析_第1页
安徽省淮北市马桥中学高二数学文摸底试卷含解析_第2页
安徽省淮北市马桥中学高二数学文摸底试卷含解析_第3页
安徽省淮北市马桥中学高二数学文摸底试卷含解析_第4页
安徽省淮北市马桥中学高二数学文摸底试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮北市马桥中学高二数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数f(x)=ax4+bx2+c满足f'(1)=2,则f'(-1)=

(

)A.-1 B.-2C.2 D.0参考答案:B∵,∴,令函数,可得,即函数为奇函数,∴,故选B.2.已知两条不同直线a、b,两个不同平面、,有如下命题:①若,,则;

②若,,则;③若,,则;

④若,,,则以上命题正确的个数为()A.3 B.2 C.1 D.0参考答案:C【分析】直接利用空间中线线、线面、面面间的位置关系逐一判定即可得答案.【详解】①若a∥α,b?α,则a与b平行或异面,故①错误;②若a∥α,b∥α,则a∥b,则a与b平行,相交或异面,故②错误;③若,a?α,则a与β没有公共点,即a∥β,故③正确;④若α∥β,a?α,b?β,则a与b无公共点,∴平行或异面,故④错误.∴正确的个数为1.故选:C.【点睛】本题考查命题真假的判断,考查直线与平面之间的位置关系,涉及到线面、面面平行的判定与性质定理,是基础题.

3.如图是某个几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体外接球的直径为()A.2 B. C. D.参考答案:D【考点】L!:由三视图求面积、体积.【分析】利用三视图复原的几何体的形状,几何体外接球为正方体外接球,通过三视图的数据求解该几何体外接球的直径为即可.【解答】解:由题意可知三视图复原的几何体如图:四棱锥S﹣BCDE,是正方体的一部分,正方体的棱长为2;所以几何体外接球为正方体外接球,该几何体外接球的直径为2.故选D.4.已知△ABC的斜二侧直观图是边长为2的等边△A1B1C1,那么原△ABC的面积为()A.2

B.

C.2

D.参考答案:C5.若,则的值为

)A.6

B.3

C.

D.参考答案:A6.定义在R上的奇函数f(x),满足在(0,+∞)上单调递增,且,则的解集为(

)A.(-∞,-2)∪(-1,0) B.(0,+∞)C.(-2,-1)∪(1,2) D.(-2,-1)∪(0,+∞)参考答案:D由函数性质可知,函数在上单调递增,且.结合图象及可得或,解得或.所以不等式的解集为.选D.7.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是()

A.B.C.D.参考答案:A8.若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+2y=0相切,则圆O的方程是A.

B.C.

D.参考答案:D9.函数的递增区间是(

)A.

B.和

C.

D.和参考答案:C10.设随机变量服从二项分布,且期望,,则方差等于(

)A.

B.

C.

D.2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.方程的解为

;参考答案:12.已知sinα=,则sin4α﹣cos4α的值为.参考答案:【考点】三角函数的恒等变换及化简求值.【分析】用平方差公式分解要求的算式,用同角的三角函数关系整理,把余弦变为正弦,代入题目的条件,得到结论.【解答】解:sin4α﹣cos4α=sin2α﹣cos2α=2sin2α﹣1=﹣,故答案为:﹣.13.若复数满足(为虚数单位),则的共轭复数为

.参考答案:略14.把数列{}的所有数按照从大到小的原则写成如表数表:第k行有2k﹣1个数,第t行的第s个数(从左数起)记为A(t,s),则A(11,4)=

.参考答案:【考点】归纳推理.【分析】第k行有2k﹣1个数知每行数的个数成等比数列,要求A(t,s),先求A(t,1),就必须求出前t﹣1行一共出现了多少个数,根据等比数列求和公式可求,而由可知,每一行数的分母成等差数列,可求A(t,s),令t=11,s=4,可求A(11,4).【解答】解:由第k行有2k﹣1个数,知每一行数的个数构成等比数列,首项是1,公比是2,∴前t﹣1行共有=2t﹣1﹣1个数,∴第t行第一个数是A(t,1)==,∴A(t,s)=,令t=11,s=4,∴A(11,4)=.故答案为.15.曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a2.其中,所有正确结论的序号是.参考答案:②③【考点】轨迹方程.【分析】由题意曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于常数a2(a>1),利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】解:对于①,由题意设动点坐标为(x,y),则利用题意及两点间的距离公式的得:?[(x+1)2+y2]?[(x﹣1)2+y2]=a4(1)将原点代入验证,此方程不过原点,所以①错;对于②,把方程中的x被﹣x代换,y被﹣y代换,方程不变,故此曲线关于原点对称.②正确;对于③,由题意知点P在曲线C上,则△F1PF2的面积=a2sin∠F1PF2,≤a2,所以③正确.故答案为:②③.16.如图,四边形ABCD为矩形,,BC=1,以A为圆心,1为半径作四分之一个圆弧DE,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率是.参考答案:【考点】概率的基本性质;几何概型.【专题】计算题.【分析】由题意知本题是一个几何概型,解决几何概型问题时,看清概率等于什么之比,试验包含的所有事件是∠BAD,而满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点,根据几何概型公式得到结果.【解答】解:由题意知本题是一个几何概型,试验包含的所有事件是∠BAD,如图,连接AC交弧DE于P,则,∴∠CAB=30°,满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点∴概率P=,故答案为:【点评】本题考查了几何摡型知识,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.17.设函数y=的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是.参考答案:(0,]【考点】分段函数的应用.【分析】曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.设P(t,f(t))(t>0),则Q(﹣t,t3+t2),运用向量垂直的条件:数量积为0,构造函数h(x)=(x+1)lnx(x≥e),运用导数判断单调性,求得最值,即可得到a的范围.【解答】解:假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),∵△POQ是以O为直角顶点的直角三角形,∴?=0,即﹣t2+f(t)(t3+t2)=0(*)若方程(*)有解,存在满足题设要求的两点P、Q;若方程(*)无解,不存在满足题设要求的两点P、Q.若0<t<e,则f(t)=﹣t3+t2代入(*)式得:﹣t2+(﹣t3+t2)(t3+t2)=0即t4﹣t2+1=0,而此方程无解,因此t≥e,此时f(t)=alnt,代入(*)式得:﹣t2+(alnt)(t3+t2)=0,即=(t+1)lnt(**)令h(x)=(x+1)lnx(x≥e),则h′(x)=lnx+1+>0,∴h(x)在[e,+∞)上单调递增,∵t≥e∴h(t)≥h(e)=e+1,∴h(t)的取值范围是[e+1,+∞).∴对于0<a≤,方程(**)总有解,即方程(*)总有解.故答案为:(0,].三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求值;如果不存在,请说明理由.参考答案:(1)(2)没有解:(1)由已知条件知直线l的方程为y=kx+,代入椭圆方程得+(kx+)2=1.整理得x2+2kx+1=0.①直线l与椭圆有两个不同的交点P和Q等价于Δ=8k2-4=4k2-2>0,解得k<-或k>,即k的取值范围为∪.(2)设P(x1,y1),Q(x2,y2),则+=(x1+x2,y1+y2),由方程①得x1+x2=-.②又y1+y2=k(x1+x2)+2=,③而A(,0),B(0,1),=(-,1),所以+与共线等价于x1+x2=-(y1+y2).将②③代入上式,解得k=.由(1)知k<-或k>,故没有符合题意的常数k.19.如图已知正四棱柱ABCD----A1B1C1D1,AB=1,AA1=2,点E为CC1的中点,点F为BD1的中点。(1)证明:EF⊥平面;(2)求点A1到平面BDE的距离;(3)求BD1与平面BDE所成的角的余弦值.参考答案:(1)以D为原点,DA、DC、AA1所在直线为X、Y、Z轴建立空间直角坐标系.D(0,0,0),B(1,1,0)D1(0,0,2),E(0,1,1),F(,,1)

∴→DB=(1,1,0),=(0,0,2),

x

→EF=(,-,0)

由→DB·→EF=0,·→EF=0,得,EF⊥DB,EF⊥DD1∴EF⊥面D1DB1----------------------------------------------------(2)设=(x,y,z)是平面BDE的法向量,→DB=(1,1,0),→DE=(0,1,1)由⊥→DB,⊥→DE得即∴取y=1,=(-1,1,-1),由(2)知点到平面BDE的距离为

=----20.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于?x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.参考答案:【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的定义域,在定义域内,求出导数大于0的区间,即为函数的增区间,求出导数小于0的区间即为函数的减区间.(Ⅱ)根据函数的单调区间求出函数的最小值,要使f(x)>2(a﹣1)恒成立,需使函数的最小值大于2(a﹣1),从而求得a的取值范围.(Ⅲ)利用导数的符号求出单调区间,再根据函数g(x)在区间[e﹣1,e]上有两个零点,得到,解出实数b的取值范围.【解答】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ)

,由f'(x)>0解得;由f'(x)<0解得.所以,f(x)在区间上单调递增,在区间上单调递减.所以,当时,函数f(x)取得最小值,.因为对于?x∈(0,+∞)都有f(x)>2(a﹣1)成立,所以,即可.则.由解得.所以,a的取值范围是

.(Ⅲ)依题得,则.由g'(x)>0解得

x>1;

由g'(x)<0解得

0<x<1.所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,解得.

所以,b的取值范围是.21.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断.【分析】求出不等式的等价条件,根据充分条件和必要条件的定义即可得到结论.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论