江苏省苏州实验初级中学2024届九年级数学第一学期期末经典试题含解析_第1页
江苏省苏州实验初级中学2024届九年级数学第一学期期末经典试题含解析_第2页
江苏省苏州实验初级中学2024届九年级数学第一学期期末经典试题含解析_第3页
江苏省苏州实验初级中学2024届九年级数学第一学期期末经典试题含解析_第4页
江苏省苏州实验初级中学2024届九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州实验初级中学2024届九年级数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.的值为()A.2 B. C. D.2.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 B.4+4 C.8﹣4 D.+13.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.4.方程x2-4=0的解是A.x=2 B.x=-2 C.x=±2 D.x=±45.掷一枚质地均匀的硬币次,下列说法中正确的是()A.可能有次正面朝上 B.必有次正面朝上C.必有次正面朝上 D.不可能次正面朝上6.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50° B.65° C.100° D.130°7.半径为的圆中,的圆心角所对的弧的长度为()A. B. C. D.8.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是()A. B. C. D.9.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.10.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于2二、填空题(每小题3分,共24分)11.如图,把置于平面直角坐标系中,点A的坐标为,点B的坐标为,点P是内切圆的圆心.将沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2019次滚动后,内切圆的圆心的坐标是________.12.如图,,,与交于点,则是相似三角形共有__________对.13.如图是二次函数y=ax2+bx+c的部分图象,由图象可知方程ax2+bx+c=0的解是_________.14.如图,一架长为米的梯子斜靠在一竖直的墙上,这时测得,如果梯子的底端外移到,则梯子顶端下移到,这时又测得,那么的长度约为______米.(,,,)15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为_____.16.如图,在中,,,点是边的中点,点是边上一个动点,当__________时,相似.17.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).18.工厂质检人员为了检测其产品的质量,从同一批次共1000件产品中随机抽取50件进行检检测出次品1件,由此估计这一批产品中的次品件数是_____.三、解答题(共66分)19.(10分)解方程:(1)x2-8x+6=0(2)x123x1020.(6分)如图1,抛物线与x轴相交于点A、点B,与y轴交于点C(0,3),对称轴为直线x=1,交x轴于点D,顶点为点E.(1)求该抛物线的解析式;(2)连接AC,CE,AE,求△ACE的面积;(3)如图2,点F在y轴上,且OF=,点N是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON交对称轴于点G,连接GF,若GF平分∠OGE,求点N的坐标.21.(6分)已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.22.(8分)阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂(问题解决)若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?(数学思考)(3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.23.(8分)(1)解方程:(2)计算:24.(8分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)25.(10分)如图,正方形的边长为9,、分别是、边上的点,且.将绕点逆时针旋转,得到.(1)求证:(2)当时,求的长.26.(10分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);(2)直接写出A'点的坐标;(3)直接写出△A'B'C'的周长.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据特殊角的三角函数值及负指数幂的定义求解即可.【题目详解】故选:D【题目点拨】本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.2、A【解题分析】试题分析:∵四边形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,则S△ACD=AD•CD=×2×2=2;AC=AD=2,则EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME•EC=(2﹣2)2=6﹣1,∴阴影部分的面积=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故选A.考点:正方形的性质.3、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【题目详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【题目点拨】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.4、C【分析】方程变形为x1=4,再把方程两边直接开方得到x=±1.【题目详解】解:x1=4,∴x=±1.故选C.5、A【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【题目详解】解:.掷一枚质地均匀的硬币次,可能有2次正面朝上,故本选项正确;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;故选:.【题目点拨】本题考查的知识点是随机事件的概念,理解随机事件的概念是解题的关键.6、C【分析】直接根据题意得出AB=AC,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【题目详解】解:由题意可得:AB=AC,

∵∠ABC=65°,

∴∠ACB=65°,

∴∠A=50°,

∴∠BOC=100°,

故选:C.【题目点拨】本题考查圆心角、弧、弦的关系.7、D【分析】根据弧长公式l=,计算即可.【题目详解】弧长=,

故选:D.【题目点拨】本题考查弧长公式,解题的关键是记住弧长公式,属于中考常考题型.8、A【分析】首先根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【题目详解】解:∵根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:,该几何体的侧面积为:,∴总表面积为:,故选:A.【题目点拨】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.9、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【题目详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【题目点拨】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.10、D【解题分析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【题目详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【题目点拨】此题考查的是求概率问题,掌握概率公式是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】由勾股定理得出AB=,求出Rt△OAB内切圆的半径=1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次为一个循环,由2019÷3=673,即可得出结果.【题目详解】解:∵点A的坐标为(0,4),点B的坐标为(3,0),∴OA=4,OB=3,∴AB=,∴Rt△OAB内切圆的半径=,∴P的坐标为(1,1),∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,∴P3(3+5+4+1,1),即(13,1),每滚动3次为一个循环,∵2019÷3=673,∴第2019次滚动后,Rt△OAB内切圆的圆心P2019的横坐标是673×(3+5+4)+1,即P2019的横坐标是8077,∴P2019的坐标是(8077,1);故答案为:(8077,1).【题目点拨】本题考查了三角形的内切圆与内心、勾股定理、坐标类规律探索等知识;根据题意得出规律是解题的关键.12、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【题目详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【题目点拨】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.13、,【题目详解】解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是-1.

所以,.

故答案是:,.【题目点拨】考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.14、【分析】直接利用锐角三角函数关系得出,的长,进而得出答案.【题目详解】由题意可得:∵,,,解得:,∵,,,解得:,则,答:的长度约为米.故答案为.【题目点拨】此题主要考查了解直角三角形的应用,正确得出,的长是解题关键.15、x(x﹣12)=1【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为1,即可得出方程.【题目详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=1.故答案为:x(x﹣12)=1.【题目点拨】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.16、【分析】直接利用,找到对应边的关系,即可得出答案.【题目详解】解:当时,

则,

∵,点是边的中点,

∴∵,∴则综上所述:当BQ=时,.

故答案为:.【题目点拨】此题主要考查了相似三角形的性质,得到对应边成比例是解答此题的关键.17、【分析】过点C作CD⊥AB于点D,在Rt△ABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可.【题目详解】过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×=.故答案为.【题目点拨】本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键.18、1【分析】求出次品所占的百分比,即可求出1000件中次品的件数.【题目详解】解:1000×=1(件),故答案为:1.【题目点拨】考查样本估计总体,求出样本中次品所占的百分比是解题的关键.三、解答题(共66分)19、(1)x1=,x2=-(2)x1=1,x2=1.【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【题目详解】(1)x2-8x+6=0x2-8x+16=10(x-1)2=10x-1=±∴x1=,x2=-(2)x123x10x1x1-3x1x-1∴x-1=0或x-1=0解得x1=1,x2=1.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.20、(1)y=-x2+2x+3;(2)1;(3)点N的坐标为:(,).【分析】(1)由点C的坐标,求出c,再由对称轴为x=1,求出b,即可得出结论;(2)先求出点A,E坐标,进而求出直线AE与y轴的交点坐标,最后用三角形面积公式计算即可得出结论;(3)先利用角平分线定理求出FQ=1,进而利用勾股定理求出OQ=1=FQ,进而求出∠BON=45°,求出直线ON的解析式,最后联立抛物线解析式求解,即可得出结论.【题目详解】解:(1)∵抛物线y=-x2+bx+c与y轴交于点C(0,3),令x=0,则c=3,∵对称轴为直线x=1,∴,∴b=2,∴抛物线的解析式为y=-x2+2x+3;(2)如图1,AE与y轴的交点记作H,由(1)知,抛物线的解析式为y=-x2+2x+3,令y=0,则-x2+2x+3=0,∴x=-1或x=3,∴A(-1,0),当x=1时,y=-1+2+3=4,∴E(1,4),∴直线AE的解析式为y=2x+2,∴H(0,2),∴CH=3-2=1,∴S△ACE=CH•|xE-xA|=×1×2=1;(3)如图2,过点F作FP⊥DE于P,则FP=1,过点F作FQ⊥ON于Q,∵GF平分∠OGE,∴FQ=FP=1,在Rt△FQO中,OF=,根据勾股定理得,OQ=,∴OQ=FQ,∴∠FOQ=45°,∴∠BON=90°-45°=45°,过点Q作QM⊥OB于M,OM=QM∴ON的解析式为y=x①,∵点N在抛物线y=-x2+2x+3②上,联立①②,则,解得:或(由于点N在对称轴x=1右侧,所以舍去),∴点N的坐标为:(,).【题目点拨】此题是二次函数综合题,主要考查了待定系数法,三角形面积的求法,角平分线定理,勾股定理,直线与抛物线的交点坐标的求法,求出直线ON的解析式是解本题的关键.21、(1)50°,25°;(2)见解析【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【题目详解】(1)解:连接OD.∵,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案为50°,25°.(2)证明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.【题目点拨】本题考查的是圆的综合,难度中等,运用到了圆中的基本性质以及全等三角形的相关知识需要熟练掌握.22、(1)400N;(2)1.5米;(3)见解析【分析】(1)根据杠杆定律求得函数的解析式后代入l=1.5求得力的大小即可;(2)将求得的函数解析式变形后求得动力臂的大小,然后即可求得增加的长度;(3)利用反比例函数的知识结合杠杆定律进行说明即可.【题目详解】试题解析:(1)、根据“杠杆定律”有FL=1500×0.4,∴函数的解析式为F=,当L=1.5时,F==400,因此,撬动石头需要400N的力;(2)、由(1)知FL=600,∴函数解析式可以表示为:L=,当F=400×=200时,L=3,3﹣1.5=1.5(m),因此若用力不超过400N的一半,则动力臂至少要加长1.5米;(3)因为撬棍工作原理遵循“杠杆定律”,当阻力与阻力臂一定时,其乘积为常数,设其为k,则动力F与动力臂L的函数关系式为F=,根据反比例函数的性质可知,动力F随动力臂l的增大而减小,所以动力臂越长越省力.考点:反比例函数的应用23、(1);(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函数值计算,即可得到结果.【题目详解】(1),,;(2)=1-2=-1【题目点拨】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.24、(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)详见解析.【分析】(1)按照分配方案的步骤进行分配即可;(2)按照分配方案的步骤进行分配即可.【题目详解】解:(1)如下表:故分配结果如下:甲:拿到物品C和现金:元.乙:拿到现金元.丙:拿到物品A,B,付出现金:元.故答案为:甲:拿到物品C和现金:200元.乙:拿到现金450元.丙:拿到物品A,B,付出650元.(2)因为0<m-n<15所以所以即分配物品后,小莉获得的“价值"比小红高.高出的数额为:所以小莉需拿()元给小红.所以分配结果为:小红拿到物品D和()元钱,小莉拿到物品E并付出()元钱.【题目点拨】本题考查了代数式的应用,正确读懂题干,理解分配方案是解题的关键.25、(1)见解析;(2)7.1【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF=41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论