版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市第五十五中学2024届九年级数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A.9 B.12 C.-14 D.102.在一块半径为的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长()A. B. C. D.3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4) B.(6,2) C.(4,4) D.(8,4)4.图中几何体的俯视图是()A. B. C. D.5.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于()A.50° B.49° C.48° D.47°6.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5) B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小 D.图象与x轴的两个交点之间的距离为57.关于x的一元二次方程(2x-1)2+n2+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判定8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个9.下列图形的主视图与左视图不相同的是()A. B. C. D.10.关于的分式方程的解为非负整数,且一次函数的图象不经过第三象限,则满足条件的所有整数的和为()A. B. C. D.11.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(-3,2)二、填空题(每题4分,共24分)13.如图,是⊙的直径,,点是的中点,过点的直线与⊙交于、两点.若,则弦的长为__________.14.抛物线的顶点坐标是___________.15.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE,矩形DEFG的面积为,那么关于的函数关系式是______.(不需写出x的取值范围).16.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.18.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于___________.三、解答题(共78分)19.(8分)在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小明围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.20.(8分)如图,一次函数y=﹣2x+8与反比例函数(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于D点.(1)求反比例函数的解析式.(2)在第一象限内,根据图象直接写出一次函数值大于反比例函数值时自变量x的取值范围.21.(8分)如图①,在平行四边形中,以O为圆心,为半径的圆与相切于点B,与相交于点D.(1)求的度数.(2)如图②,点E在上,连结与交于点F,若,求的度数.22.(10分)小明和同学们在数学实践活动课中测量学校旗杆的高度.如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为,看旗杆底部的俯角是为,教学楼与旗杆的水平距离是,旗杆有多高(结果保留整数)?(已知,,,,)23.(10分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.24.(10分)已知正方形ABCD的边长为2,中心为M,⊙O的半径为r,圆心O在射线BD上运动,⊙O与边CD仅有一个公共点E.(1)如图1,若圆心O在线段MD上,点M在⊙O上,OM=DE,判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,⊙O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若,设点O与点M之间的距离为,EG=,当时,求的函数解析式.25.(12分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率.26.利用公式法解方程:x2﹣x﹣3=1.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3个单位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.2、D【分析】画出图形,作于点,利用垂径定理和等边三角形的性质求出AC的长即可得出AB的长.【题目详解】解:依题意得,连接,,作于点,∵,∴,,∴,∴.故选:D.【题目点拨】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.3、A【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【题目详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴∴解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【题目点拨】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.4、D【解题分析】本题考查了三视图的知识找到从上面看所得到的图形即可.从上面看可得到三个矩形左右排在一起,中间的较大,故选D.5、A【解题分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【题目详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=12∠AOC=50°故选:A.【题目点拨】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【题目详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【题目点拨】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.7、C【分析】先对原方程进行变形,然后进行判定即可.【题目详解】解:由原方程可以化为:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程没有实数根.故答案为C.【题目点拨】本题考查了一元二次方程的解,解题的关键在于对方程的变形,而不是运用根的判别式.8、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【题目详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.【题目点拨】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.9、D【解题分析】确定各个选项的主视图和左视图,即可解决问题.【题目详解】A选项,主视图:圆;左视图:圆;不符合题意;B选项,主视图:矩形;左视图:矩形;不符合题意;C选项,主视图:三角形;左视图:三角形;不符合题意;D选项,主视图:矩形;左视图:三角形;符合题意;故选D【题目点拨】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键.10、A【分析】解分式方程可得且,再根据一次函数的图象不经过第三象限,可得,结合可得,且,再根据是整数和是非负整数求出的所有值,即可求解.【题目详解】经检验,不是方程的解∴∵分式方程的解为非负整数∴解得且∵一次函数的图象不经过第三象限∴解得∴,且∵是整数∴∵是非负整数故答案为:A.【题目点拨】本题考查了分式方程和一次函数的问题,掌握解分式方程和解不等式组的方法是解题的关键.11、A【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、是轴对称图形,也是中心对称图形,故本选项符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故答案为A.【题目点拨】本题考查了中心对称图形和轴对称图形的概念,理解这两个概念是解答本题的关键.12、B【解题分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.【题目详解】根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).故选B.【题目点拨】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(每题4分,共24分)13、【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【题目详解】连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为.【题目点拨】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE是解决问题的关键.14、(1,﹣4).【解题分析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).15、;【分析】根据题意和三角形相似,可以用含的代数式表示出,然后根据矩形面积公式,即可得到与的函数关系式.【题目详解】解:四边形是矩形,,上的高,,矩形的面积为,,,,得,,故答案为:.【题目点拨】本题考查根据实际问题列二次函数关系式、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.16、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【题目详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【题目点拨】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.17、【题目详解】∵圆、矩形、菱形、正方形是中心对称图案,∴抽到有中心对称图案的卡片的概率是,故答案为.18、.【解题分析】试题分析:根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.试题解析:连接AB,由画图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.考点:1.特殊角的三角函数值;2.等边三角形的判定与性质.三、解答题(共78分)19、(1)20,30;(2)用这根细绳围成一个边长为25㎝的正方形时,其面积最大,最大面积是625【分析】(1)已知细绳长是1米,则已知围成的矩形的周长是1米,设她围成的矩形的一边长为xcm,则相邻的边长是50-xcm.根据矩形的面积公式,即可列出方程,求解;(2)设围成矩形的一边长为xcm,面积为ycm2,根据矩形面积公式就可以表示成边长x的函数,根据函数的性质即可求解.【题目详解】解:(1)设矩形的长为x㎝,则宽为=(50-x)㎝根据题意,得x(50-x)=600整理,得x2-50x+600=0解得x1=20,x2=30∴他围成的矩形的长为30㎝,宽为20㎝.(2)设围成的矩形的一边长为m㎝时,矩形面积为y㎝2,则有y=m(50-m)=50m-m2=-(m2-50m)=-(m2-50m+252-252)=-(m-25)2+625∴当m=25㎝时,y有最大值625㎝.20、(1)(x>0);(2)1<x<1.【分析】(1)把A(m,6),B(1,n)两点分别代入y=﹣2x+8可求出m、n的值,确定A点坐标为(1,6),B点坐标为(1,2),然后利用待定系数法求反比例函数的解析式;(2)观察函数图象得到当1<x<1,一次函数的图象在反比例函数图象上方.【题目详解】(1)把A(m,6),B(1,n)两点分别代入y=﹣2x+8得6=﹣2m+8,n=﹣2×1+8,解得m=1,n=2,∴A点坐标为(1,6),B点坐标为(1,2),把A(1,6)代入y=(x>0)求得k=1×6=6,∴反比例函数解析式为(x>0);(2)在第一象限内,一次函数值大于反比例函数值时自变量x的取值范围是1<x<1.【题目点拨】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式以及观察图象的能力.21、(1);(2).【分析】(1)根据题意连接,利用圆的切线定理和平行四边形性质以及等腰直角三角形性质进行综合分析求解;(2)根据题意连接,,过点O作于点H,证明是等腰直角三角形,利用三角函数值进行分析求解即可.【题目详解】解:(1)连接,如下图,∵是圆的切线,∴,,∵四边形是平行四边形,∴,,∴,又,∴是等腰直角三角形,∴,∴,∴;(2)连接,,过点O作于点H,如下图,∵,∴,∵,∴也是等腰直角三角形,∵,∴,∴,∴,∴.【题目点拨】本题考查圆的综合问题,熟练掌握切线和平行四边形的性质以及等腰直角三角形性质是解题的关键.22、旗杆的高约是.【分析】过点B作于点,由题意知,,,,根据锐角三角函数即可分别求出AC和CD,从而求出结论.【题目详解】解:过点B作于点,由题意知,,,∵,∴m,∵,∴m,∴m,答:旗杆的高约是.【题目点拨】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.23、纸盒的高为.【分析】设纸盒的高是,根据题意,其底面的长宽分别为(40-2x)和(30-2x),根据长方形面积公式列方程求解即可.【题目详解】解:设纸盒的高是.依题意,得.整理得.解得,(不合题意,舍去).答:纸盒的高为.【题目点拨】本题考查一元二次方程的应用,根据题意用含x的式子表示底面的长和宽,正确列方程,解方程是本题的解题关键.24、(1)相切,证明详见解析;(2).【分析】(1)过O作OF⊥AD于F,连接OE,可证△ODF≌△ODE,可得OF=OE,根据相切判定即可得出:AD与相切;(2)连接MC,可证,可得DF=CG,过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b,由于△DHF与△DPE都是等腰直角三角形,设EP=DP=a,FH=DH=b,利用勾股定理:可列出方程组解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y与x的函数解析式,由DF≤1,EG≥0,可得x的取值范围,即可求解问题.【题目详解】解:(1)直线AD与⊙O相切,理由如下:过O作OF⊥AD于F,连接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵与CD仅有一个公共点E∴CD与相切∴OE⊥DC,OE为半径∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD与相切(2)连接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M为正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b∵∠FDM=∠EDM=45°∴△DHF与△DPE都是等腰直角三角形∴EP=DP=a,FH=DH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《医药数理统计方法》题库
- 《市场营销学》期末复习章节试题及答案
- 第3单元 封建时代的欧洲(高频非选择题25题)(解析版)
- 八下期末考拔高测试卷(3)(原卷版)
- 第24课 人民解放战争的胜利(解析版)
- 《电镀工艺流程》课件
- 院线电影投资发行合同三篇
- 七夕情人节课件15
- 酒店管理中的设备设施管理
- 高一的军训心得笔记10篇
- 移动发布推介会服务方案
- 供应商产品质量监督管理制度
- 单位工程、分部工程、分项工程及检验批划分方案
- 器乐Ⅰ小提琴课程教学大纲
- 主债权合同及不动产抵押合同(简化版本)
- 服装厂安全生产责任书
- JGJ202-2010建筑施工工具式脚手架安全技术规范
- 液压爬模系统作业指导书
- 2018-2019学年北京市西城区人教版六年级上册期末测试数学试卷
- SFC15(发送)和SFC14(接收)组态步骤
- LX电动单梁悬挂说明书
评论
0/150
提交评论