版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省洪泽县联考数学九上期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3﹣1﹣101134…y…1150﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.32.下列图形中,成中心对称图形的是()A. B. C. D.3.二次函数y=x2-2x+3的最小值是()A.-2B.2C.-1D.14.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.16.如图,点是线段的垂直平分线与的垂直平分线的交点,若,则的度数是()A. B. C. D.7.抛物线的顶点坐标()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)8.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④9.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是()A.(2,﹣3) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)10.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d二、填空题(每小题3分,共24分)11.如图,从一块矩形铁片中间截去一个小矩形,使剩下部分四周的宽度都等于,且小矩形的面积是原来矩形面积的一半,则的值为_________.12.瑞士中学教师巴尔末成功的从光谱数据:,……中得到巴尔末公式,从而打开光谱奥妙的大门.请你根据以上光谱数据的规律写出它的第七个数据___.13.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.14.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)15.我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.16.反比例函数的图象在第象限.17.点(2,5)在反比例函数的图象上,那么k=_____.18.如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是__.三、解答题(共66分)19.(10分)已知二次函数的顶点坐标为,且其图象经过点,求此二次函数的解析式.20.(6分)某商城某专卖店销售每件成本为40元的商品,从销售情况中随机抽取一些情况制成统计表如下:(假设当天定的售价是不变的,且每天销售情况均服从这种规律)每件销售价(元)506070758085……每天售出件数30024018015012090……(1)观察这些数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式;(2)该店原有两名营业员,但当每天售出量超过168件时,则必须增派一名营业员才能保证营业,设营业员每人每天工资为40元,求每件产品定价多少元,才能使纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其他开支不计).21.(6分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.22.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.23.(8分)如图,反比例函数的图象经过点,射线与反比例函数的图象的另一个交点为,射线与轴交于点,与轴交于点轴,垂足为.求反比例函数的解析式;求的长在轴上是否存在点,使得与相似,若存在,请求出满足条件点的坐标,若不存在,请说明理由.24.(8分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?25.(10分)已知关于的方程①求证:方程有两个不相等的实数根.②若方程的一个根是求另一个根及的值.26.(10分)如图,一次函数的图象与反比例函数()的图象相交于点和点,点在第四象限,轴,.(1)求的值;(2)求的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【题目详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【题目点拨】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.2、B【解题分析】根据中心对称图形的概念求解.【题目详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故答案选:B.【题目点拨】本题考查了中心对称图形,解题的关键是寻找对称中心,旋转180°后与原图重合.3、B【解题分析】试题解析:因为原式=x1-1x+1+1=(x-1)11,所以原式有最小值,最小值是1.故选B.4、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【题目详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【题目点拨】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.5、B【解题分析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.6、D【分析】连接AD,根据想的垂直平分线的性质得到DA=DB,DB=DC,根据等腰三角形的性质计算即可.【题目详解】解:连接AD,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,∴设∠DAC=x°,则∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故选:D.【题目点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7、D【解题分析】根据抛物线顶点式的特点写出顶点坐标即可得.【题目详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3,4),故选D.【题目点拨】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.8、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【题目详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【题目点拨】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9、D【题目详解】解:由两个点关于原点对称,则横、纵坐标都是原数的相反数,得点(﹣3,2)关于原点对称的点是(3,﹣2).故选D.【题目点拨】本题考查关于原点对称的点的坐标.10、A【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【题目详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、c:a=d:b⇒bc=ad,故错误D、b:c=a:d⇒ad=bc,故错误.故选A.【题目点拨】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.二、填空题(每小题3分,共24分)11、1【分析】本题中小长方形的长为(80−2x)cm,宽为(60−2x)cm,根据“小长方形的面积是原来长方形面积的一半”可列出方程(80−2x)(60−2x)=×80×60,解方程从而求解.【题目详解】因为小长方形的长为(80−2x)cm,宽为(60−2x)cm,则其面积为(80−2x)(60−2x)cm2根据题意得:(80−2x)(60−2x)=×80×60整理得:x2−70x+600=0解之得:x1=1,x2=60因x=60不合题意,应舍去所以x=1.故答案为:1.【题目点拨】此题解答时应结合图形,分析出小长方形的长与宽,利用一元二次方程求解,另外应判断解出的解是否符合题意,进而确定取舍.12、【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【题目详解】解:由数据可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.【题目点拨】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.13、【解题分析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【题目详解】∵点A坐标为(3,4),∴OA==5,∴cosα=,故答案为【题目点拨】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.14、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【题目详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【题目点拨】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.15、.【解题分析】根据题意作出树状图,再根据概率公式即可求解.【题目详解】根据题意画树形图:共有6种等情况数,其中“A口进E口出”有一种情况,从“A口进E口出”的概率为;故答案为:.【题目点拨】此题主要考查概率的计算,解题的关键是依题意画出树状图.16、二、四【解题分析】:∵k=-1<0,∴反比例函数y="-1/x"中,图象在第二、四象限17、1【分析】直接把点(2,5)代入反比例函数求出k的值即可.【题目详解】∵点(2,5)在反比例函数的图象上,∴5=,解得k=1.故答案为:1.【题目点拨】此题考查求反比例函数的解析式,利用待定系数法求函数的解析式.18、【分析】先根据解析式求出点A、B、C的坐标,求出直线AC的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【题目详解】令中y=0,得x1=-,x2=5,∴直线AC的解析式为,设P(x,),∵过点P作⊙B的切线,切点是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案为:,【题目点拨】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.三、解答题(共66分)19、【分析】根据已知顶点坐标,利用待定系数法可设二次函数的解析式为,代入坐标求解即可求得二次函数的解析式.【题目详解】解:因为二次函数的顶点坐标为,所以可设二次函数的解析式为:因为图象经过点(1,1),所以,解得,所以,所求二次函数的解析式为:.【题目点拨】本题考查了用待定系数法求二次函数的解析式,一般设解析式为;当已知二次函数的顶点坐标时,可设解析式为;当已知二次函数图象与x轴的两个交点坐标时,可设解析式为.20、(1)y=-6x+600;(2)每件产品定价72元,才能使纯利润最大,纯利润最大为5296元.【分析】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,解出k、b即可求出;(2)由利润=(售价−成本)×售出件数−工资,列出函数关系式,求出最大值.【题目详解】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,经过(50,300)、(60,240),,解得k=−6,b=600,故y=−6x+600;(2)①设每件产品应定价x元,由题意列出函数关系式W=(x−40)×(−6x+600)−3×40=−6x2+840x−24000−120=−6(x2−140x+4020)=−6(x−70)2+1.②当y=168时x=72,这时只需要两名员工,W=(72−40)×168−80=5296>1.故当每件产品应定价72元,才能使每天门市部纯利润最大.【题目点拨】此题主要考查了二次函数的应用,由利润=(售价−成本)×售出件数−工资,列出函数关系式,求出最大值,运用二次函数解决实际问题,比较简单.21、(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A点和D点坐标;令x=0,求出y=-3,可确定C点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M的纵坐标为:,分别代入函数解析式求解即可;(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.【题目详解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)过点C做轴的平行线,交抛物线与点,做点C关于轴的对称点,过点做轴的平行线,交抛物线与点,如下图所示:∵△MAD的面积与△CAD的面积相等,且它们是等底三角形∴点M的纵坐标绝对值跟点C的纵坐标绝对值相等∵点C的纵坐标绝对值为:∴点M的纵坐标绝对值为:∴点M的纵坐标为:当点M的纵坐标为时,则解得:或(即点C,舍去)∴点的坐标为:当点M的纵坐标为时,则解得:∴点的坐标为:,点的坐标为:∴点M的坐标为:或或;(3)存在,分两种情况:①如图,当BC为梯形的底边时,点P与D重合时,四边形ADCB是梯形,此时点P为(-2,0).②如图,当BC为梯形的腰时,过点C作CP//AB,与抛物线交于点P,∵点C,B关于抛物线对称,∴B(2,-3)设直线AB的解析式为,则,解得.∴直线AB的解析式为.∵CP//AB,∴可设直线CP的解析式为.∵点C在直线CP上,∴.∴直线CP的解析式为.联立,解得,∴P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.22、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率.(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对.(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决.【题目详解】解:(1)“3点朝上”的频率:6÷60=0.1“5点朝上”的频率:20÷60=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次.(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种.故P(点数之和为3的倍数)==.【题目点拨】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同的写作要点3篇
- 房屋买卖合同版格式版格式样式3篇
- 数据保密合同3篇
- 搅拌站分包合同违约责任3篇
- 旅游导游计件工资提升服务质量3篇
- 按揭合同补充协议的制定背景3篇
- 工业罩棚施工合同3篇
- 房屋买卖委托书怎么写才有效3篇
- 摄影设备维护合同3篇
- 授权委托书合同范本3篇
- 化工和危险化学品企业评估分级指南(大中型企业版)
- 管理咨询服务实施方案
- 瑞得RTS-820系列全站仪说明书(适用RTS-822.822A.822L.822R.822R .822R3)
- 物流信息技术(2023-2024-1)学习通超星期末考试答案章节答案2024年
- 建筑垃圾外运施工方案
- 彩票行业数字化转型
- 术后肺炎预防和控制专家共识解读课件
- 2024秋期国家开放大学专科《经济学基础》一平台在线形考(形考任务1至5)试题及答案
- 管道拆除施工方案
- 2024二十届三中全会知识竞赛题库及答案
- 2024年执业药师继续教育答案
评论
0/150
提交评论