云南省大理市炳辉中学高二数学文上学期摸底试题含解析_第1页
云南省大理市炳辉中学高二数学文上学期摸底试题含解析_第2页
云南省大理市炳辉中学高二数学文上学期摸底试题含解析_第3页
云南省大理市炳辉中学高二数学文上学期摸底试题含解析_第4页
云南省大理市炳辉中学高二数学文上学期摸底试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大理市炳辉中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知F是抛物线的焦点,A、B是该抛物线上的两点,,则线段AB的中点到y轴的距离为(

)A. B. C.1 D.参考答案:B略2.函数的一个零点所在的区间是(

)A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:C【分析】根据函数零点的判定定理进行判断即可【详解】是连续的减函数,又可得f(2)f(3)<0,∴函数f(x)的其中一个零点所在的区间是(2,3)故选:C【点睛】本题考查了函数零点的判定定理,若函数单调,只需端点的函数值异号即可判断零点所在区间,是一道基础题.3.若圆与圆相切,则实数m的取值集合是

(A)

(B)

(C)

(D)参考答案:D4.已知,,,则a,b,c的大小关系为()A. B.C. D.参考答案:A试题分析:因为,所以由指数函数的性质可得,,因此,故选A.考点:1、指数函数的性质;2、对数函数的性质及多个数比较大小问题.【方法点睛】本题主要考查指数函数的性质、对数函数的性质以及多个数比较大小问题,属于中档题.多个数比较大小问题能综合考查多个函数的性质以及不等式的性质,所以也是常常是命题的热点,对于这类问题,解答步骤如下:(1)分组,先根据函数的性质将所给数据以为界分组;(2)比较,每一组内数据根据不同函数的单调性比较大小;(3)整理,将各个数按顺序排列.5.某算法的程序框图如图所示,则输出S的值是(

)(A)6

(B)24

(C)120

(D)840参考答案:C考点:程序框图.6.下列求导数运算正确的是()A.

B. C. D.参考答案:C7.复数的共轭复数是(

) A. B. C. D.参考答案:B8.正项等比数列{an}中,存在两项am、an使得=4a1,且a6=a5+2a4,则的最小值是()A. B.2 C. D.参考答案:A【考点】基本不等式在最值问题中的应用;等比数列的性质.【分析】由a6=a5+2a4,求出公比q,由=4a1,确定m,n的关系,然后利用基本不等式即可求出则的最小值.【解答】解:在等比数列中,∵a6=a5+2a4,∴,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∵=4a1,∴,即2m+n﹣2=16=24,∴m+n﹣2=4,即m+n=6,∴,∴=()=,当且仅当,即n=2m时取等号.故选:A.9.甲乙两位同学同住一小区,甲乙俩同学都在7:00~7:20经过小区门口.由于天气下雨,他们希望在小区门口碰面结伴去学校,并且前一天约定先到者必须等候另一人5分钟,过时即可离开.则他俩在小区门口碰面结伴去学校的概率是()A. B. C. D.参考答案:D【考点】列举法计算基本事件数及事件发生的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0≤x≤20,0≤y≤20},集合对应的面积是边长为20的正方形的面积S=20×20=400,而满足条件的事件对应的集合是A═{(x,y)|},由此能求出两人能够会面的概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0≤x≤20,0≤y≤20}集合对应的面积是边长为20的正方形的面积S=20×20=400,而满足条件的事件对应的集合是A═{(x,y)|},作出可行域,得:

两人能够会面的概率是p==故选:D.10.椭圆+=1与双曲线-=1有相同的焦点,则k应满足的条件是()A.k>3B.2<k<3

C.k=2

D.0<k<2参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到棱A1B1与棱BC的距离相等,则动点P所在曲线的形状为_______

.参考答案:抛物线弧.解析:在平面AB1内,动点P到棱A1B1与到点B

的距离相等.12.设函数f(x)=ax3+bx2+cx(c<0),其图象在点A(1,0)处的切线的斜率为0,则f(x)的单调递增区间是________.参考答案:[,1]或(,1)或[,1)或(,1]13.二项式的展开式中所有二项式系数和为64,则展开式中的常数项为﹣160,则a=

.参考答案:1【考点】DB:二项式系数的性质.【分析】由题意可得:2n=64,解得n=6.再利用二项式定理的通项公式即可得出.【解答】解:由题意可得:2n=64,解得n=6.∴Tr+1=26﹣r(﹣a)rC6rx3﹣r,令3﹣r=0,解得r=3.∴23(﹣a)3C63=﹣160,化为:(﹣a)3=﹣1,解得a=1.故答案为:1.【点评】本题考查了二项式定理的性质及其应用,考查了推理能力与计算能力,属于基础题.14.若曲线在点处的切线与直线垂直,则常数a=___.参考答案:-2【分析】利用导数的几何意义,求得在点处的切线斜率为,再根据两直线的位置关系,即可求解.【详解】由题意,函数,可得,所以,即在点处的切线斜率为,又由在点处的切线与直线垂直,所以,解得.【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中利用导数的几何意义求得切线的斜率,再根据两直线的位置关系是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知不等式组所表示的平面区域的面积为4,则的值为

*__.参考答案:1略16.由曲线y=,直线y=x-2及y轴所围成的图形的面积为_________参考答案:略17.=.参考答案:【考点】67:定积分.【分析】根据的几何意义求出其值即可.【解答】解:由题意得:的几何意义是以(0,0)为圆心,以3为半径的圆的面积的,而S圆=9π,故=,故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知椭圆的两焦点为、,离心率为(1)求椭圆的标准方程;(2)设点在椭圆上,且,求的值。参考答案:略19.

设函数.

(I)求函数f(x)的最小正周期和单调递增区间;

(Ⅱ)当时,f(x)的最大值为2,求a的值,并求出的对称轴方程.参考答案:略20.已知函数f(x)=2sinxcosx﹣2cos2x+1,(I)求f(x)的最大值和对称中心坐标;(Ⅱ)讨论f(x)在[0,π]上的单调性.参考答案:【考点】三角函数的最值;正弦函数的单调性;正弦函数的对称性.【分析】(Ⅰ)首先通过三角函数关系式的恒等变换,把函数关系式变形成正弦型函数,进一步利用整体思想求出函数的最值和对称中心.(Ⅱ)根据(Ⅰ)所求的关系式,利用整体思想求出函数的单调递增区间和递减区间.【解答】解:(Ⅰ),=,=,则:的最大值为2,令:(k∈Z),解得:(k∈Z),则函数f(x)对称中心为:;(Ⅱ)由(Ⅰ)得:令:,(k∈Z),解得:(k∈Z),当k=0或1时,得到函数f(x)的单调递增区间为:和;同理:令:(k∈Z),解得:,(k∈Z),当k=0时得到函数f(x)的单调递减区间为:.21.设函数.(Ⅰ)讨论的单调性;(Ⅱ)证明当时,;(Ⅲ)设,证明当时,.参考答案:(Ⅰ)当时,单调递增;当时,单调递减;(Ⅱ)见解析;(Ⅲ)见解析.试题分析:(Ⅰ)首先求出导函数,然后通过解不等式或可确定函数的单调性;(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的换为即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理.试题解析:(Ⅰ)由题设,的定义域为,,令,解得.当时,,单调递增;当时,,单调递减.(Ⅱ)由(Ⅰ)知,在处取得最大值,最大值为.所以当时,.故当时,,,即.(Ⅲ)由题设,设,则,令,解得.当时,,单调递增;当时,,单调递减.由(Ⅱ)知,,故,又,故当时,.所以当时,.【考点】利用导数研究函数的单调性、不等式的证明与解法【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明.22.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,,连接MN.(1)证明:对任意,总有MN∥平面DCC1D1;(2)当MN的长度最小时,求二面角的平面角的余弦值。参考答案:(1)见解析;(2)【分析】作∥,交于点,作∥,交于点,连接.通过证明四边形为平行四边形,可得∥,再根据直线与平面平行的判断定理可证.(2)根据题意计算得,再配方可得取最小值时分别为的中点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论