2024届四川省宜宾市翠屏区二片区数学九上期末复习检测试题含解析_第1页
2024届四川省宜宾市翠屏区二片区数学九上期末复习检测试题含解析_第2页
2024届四川省宜宾市翠屏区二片区数学九上期末复习检测试题含解析_第3页
2024届四川省宜宾市翠屏区二片区数学九上期末复习检测试题含解析_第4页
2024届四川省宜宾市翠屏区二片区数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省宜宾市翠屏区二片区数学九上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<02.下列标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.3.在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.4.如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角∠AOB=()A.40° B.45° C.50° D.60°5.已知△ABC∽△A′B′C′,且相似比为1:1.则△ABC与△A′B′C′的周长比为()A.1:1 B.1:6 C.1:9 D.1:6.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A. B. C. D.7.如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为()A.2 B. C.4 D.8.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①9.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b>解集为()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>210.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y3二、填空题(每小题3分,共24分)11.计算:=_________.12.如图,已知点是函数图象上的一个动点.若,则的取值范围是__________.13.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.15.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.16.如图,一段抛物线记为,它与轴的交点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;将绕点旋转180°得到,交轴于点为,顶点为;……,如此进行下去,直至到,顶点为,则顶点的坐标为_________.17.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.18.如图,Rt△ABC中,∠C=90°,AB=10,,则AC的长为_______.三、解答题(共66分)19.(10分)某超市欲购进一种今年新上市的产品,购进价为20元件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量件与每件的销售价元件之间有如下关系:请写出该超市销售这种产品每天的销售利润元与x之间的函数关系式,并求出超市能获取的最大利润是多少元.若超市想获取1500元的利润求每件的销售价.若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?20.(6分)某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价元时,日盈利为元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?21.(6分)一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.22.(8分)在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.(1)若a=-1.①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.23.(8分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)24.(8分)已知抛物线y=x2+mx﹣10与x轴的一个交点是(﹣,0),求m的值及另一个交点坐标.25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.26.(10分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【题目详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【题目点拨】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.2、C【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,不是中心对称图形.故错误;

B、不是轴对称图形,也不是中心对称图形.故错误;

C、是轴对称图形,也是中心对称图形.故正确;

D、是轴对称图形,不是中心对称图形.故错误.

故选:C.【题目点拨】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、B【分析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【题目详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【题目点拨】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.4、B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可.【题目详解】解:∵指针恰好指向白色扇形的穊率为,∴黑、白两种颜色的扇形的面积比为1:7,∴∠AOB=×360°=45°,故选:B.【题目点拨】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键.5、A【解题分析】根据相似三角形的周长比等于相似比即可得出答案.【题目详解】∵△ABC∽△A′B′C′,且相似比为1:1,∴△ABC与△A′B′C′的周长比为1:1,故选:A.【题目点拨】本题考查相似三角形的性质,解题的关键是熟练掌握基本知识,属于基础题型.6、B【解题分析】根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【题目详解】解:∵一次函数y=ax+b图像过一、二、四,∴a<0,b>0,又∵反比例函数y=图像经过二、四象限,∴c<0,∴二次函数对称轴:>0,∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【题目点拨】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.7、D【分析】连接OB、OC,证明△OBC是等边三角形,得出即可求解.【题目详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴,故选:D.【题目点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.8、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【题目详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【题目点拨】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.9、A【解题分析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【题目详解】解:由图可知,x>2或﹣1<x<0时,ax+b>.故选A.【题目点拨】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.10、B【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【题目详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【题目点拨】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.二、填空题(每小题3分,共24分)11、7【分析】本题先化简绝对值、算术平方根以及零次幂,最后再进行加减运算即可.【题目详解】解:=6-3+1+3=7【题目点拨】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.12、【分析】根据得-1<a<1,再根据二次函数的解析式求出对称轴,再根据函数的图像与性质即可求解.【题目详解】∵∴-1<a<1,∵函数对称轴x=∴当a=,y有最大值当a=-1时,∴则的取值范围是故填:.【题目点拨】此题主要考查二次函数的图像与性质,解题的关键是根据题意函数图像进行求解.13、【分析】根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【题目详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【题目点拨】考核知识点:扇形面积计算.熟记公式是关键.14、2.【分析】由角平分线的性质得出∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,由勾股定理得出,由平行线的性质得出∠OPC=∠AOP,得出∠OPC=∠BOP,证出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜边上的中线性质即可得出答案.【题目详解】∵OP平分∠AOB,PD⊥OA于点D,PE⊥OB于点E,∴∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,∴,∵CP∥OA,∴∠OPC=∠AOP,∴∠OPC=∠BOP,∴,∴,∴,在Rt△OPD中,点M是OP的中点,∴;故答案为:2.【题目点拨】本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.15、6【解题分析】由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.16、(9.5,-0.25)【题目详解】由抛物线可求;又抛物线某是依次绕系列点旋转180°,根据中心对称的特征得:,.根据以上可知抛物线顶点的规律为(的整数);根据规律可计算点的横坐标为,点的纵坐标为.∴顶点的坐标为故答案为:(9.5,-0.25)【题目点拨】本题主要是以二次函数的图象及其性质为基础,再根据轴对称和中心对称找顶点坐标的规律.关键是抛物线顶点到坐标轴的距离的变化,再根据规律计算.17、.【解题分析】∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为:.18、8【解题分析】在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【题目详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【题目点拨】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.三、解答题(共66分)19、(1),2000;(2)每件的销售价为35元和25元;(3).【分析】(1)根据利润=单件利润×销售量列出y与x的函数关系式,利用对称轴求函数最大值;(2)令y=1500构造一元二次方程;(3)由(2)结合二次函数图象观察图象可解.【题目详解】(1)由已知

当时,

解得,

所以每件的销售价为35元和25元.

由结合函数图象可知超市想获取的利润不低于1500元,x的取值范围为:25<x<35.【题目点拨】本题考查了二次函数实际应用问题,解题的关键是熟练掌握二次函数的性质和一元二次方程,解答时注意结合函数图象解决问题.20、(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.【题目详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;(2)设每件商品降价x元时,利润为w元根据题意得:w=(30x)(100+10x)=10x2+200x+3000=-10(x-10)2+4000∵10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【题目点拨】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.21、(1)见解析;(2)【分析】(1)根据题意画树状图,求得所有等可能的结果;(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【题目详解】(1)画树状图为:共有8种等可能的结果数;(2)3次摸到的球颜色相同的结果数为2,3次摸到的球颜色相同的概率==.【题目点拨】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.22、(1)①n=1;②(2)【分析】(1)①根据已知条件可确定抛物线图象的基本特征,从而列出关于的方程,即可得解;②根据二次函数图象的性质分三种情况进行分类讨论,从而得到与的分段函数关系;(2)由得正负进行分类讨论,结合已知条件求得的取值范围.【题目详解】解:(1)∵抛物线过坐标原点∴c=0,a=-1∴y=-x2+2nx∴抛物线的对称轴为直线x=n,且n≥2,抛物线开口向下∴当-1≤x≤2时,y随x的增大而增大∴当x=2时,函数的最大值为8∴-4+4n=8∴n=1.②若则∴抛物线开口向下,在对称轴右侧,随的增大而减小∴当时,函数值最大,;若则∴此时,抛物线的顶点为最高点∴;若则∴抛物线开口向下,在对称轴左侧,随的增大而增大∴当时,函数值最大,∴综上所述:(2)结论:或证明:∵过∴∴①∵若,直线的解析式为,抛物线的对称轴为直线∴顶点为,对称轴与直线交点坐标为∴两个整点为,∵不含边界∴∴②∵若,区域内已经确定有两个整点,∴在第三项象限和第一象限的区域内都要确保没有整点∴∴∵当时,直线上的点的纵坐标为,抛物线上的点的纵坐标为∴∴∴故答案为:(1)①;②(2)或【题目点拨】本题属于二次函数的综合创新题目,熟练掌握二次函数的性质是解题的关键,注意分类讨论思想方法的应用.23、(1)见解析;(2).【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可.(2)求出∠BOD=∠GOB,从而求出∠BOD的度数,根据弧长公式求出即可.【题目详解】解:(1)证明:连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴DO∥BC.∵DE⊥BC,∴DE⊥OD.∵OD为半径,∴DE是⊙O切线.(2)连接OG,∵DG⊥AB,OB过圆心O,∴弧BG=弧BD.∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=140°.∴劣弧DG的长是.24、m=﹣;另一个交点坐标(2,0)【分析】首先将点(﹣,0)的坐标代入抛物线的解析式中,即可求得m的值,再令抛物线中y=0,可得出关于x的一元二次方程,即可求得抛物线与x轴的另一交点的坐标.【题目详解】解:根据题意得,5﹣m﹣10=0,所以m=﹣;得抛物线的解析式为y=x2﹣x﹣10,∵x2﹣x﹣10=0,解得x1=﹣,x2=2,∴抛物线与x轴的另一个交点坐标(2,0).故答案为:m=﹣;另一个交点坐标(2,0).【题目点拨】本题考查了抛物线与轴的交点:从二次函数的交点式(a,b,c是常数,a≠0)中可直接得出抛物线与轴的交点坐标,.25、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.【解题分析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.试题解析:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论