痛觉过敏探究资料_第1页
痛觉过敏探究资料_第2页
痛觉过敏探究资料_第3页
痛觉过敏探究资料_第4页
痛觉过敏探究资料_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

痛觉过敏的研究【关键词】 过敏 ;疼痛外周组织炎症或神经损伤常常引起持续性自发痛(spontaneouspain)、痛觉过敏(hyperalgesia)和痛觉超敏 (allodynia)等病理性疼痛。持续性自发痛是指在不受任何外来刺激下持续发生的疼痛, 痛觉超敏是指非伤害性刺激即可引起的疼痛, 痛觉过敏指伤害性刺激下在受损部位及周围组织或远处可产生各种敏感性增强的疼痛或痛觉过敏区域, 引起的更加强烈的疼痛。 这些病理性疼痛是外周和中枢敏感化的结果, 其中脊髓敏感化起着十分重要的作用。痛觉过敏时机体对疼痛的感觉阈值降低, 轻微刺激即可引起疼痛感觉的现象。 兴奋性氨基酸(excitatoryaminoacids,EAAs)的释放及受体的激活所引起的细胞内信使,特别是蛋白激酶C(proteinkinaseC,PKC)、一氧化氮 (nitricoxide,NO)等生成是此种外周损伤或伤害性刺激所引发的痛觉过敏现象的原因。痛觉过敏及疼痛模型敏化和痛觉过敏组织损伤可以导致伤害感受系统出现两种反应, 即外周敏化和中枢敏化。 外周敏化是初级传入纤维的变化引起的,表现为: 对刺激反应阈值的下降、 对阈上刺激反应增强、自主活动增强、感受野 (刺激可诱发传入神经纤维动作电位的区域 )的扩大。伤害性刺激的输入能提高中枢神经系统疼痛传递神经元的反应, 称为中枢敏化。 例如,损伤区域以外的刺激也可诱发脊髓背角疼痛反应增加。 外周敏化导致初级痛觉过敏, 表现为对来自损伤区域的刺激产生夸大的疼痛反应。 中枢敏化导致次级痛觉过敏, 表现为损伤区域外的刺激也能产生增加的疼痛反应。许多研究表明: 机械刺激 (不是温度刺激 )产生的次级痛觉过敏 (次级机械性痛觉过敏 )发生在损伤后,它不是由未损伤区域的初级传入纤维的敏化引起的。痛觉过敏的类型皮肤或周围组织损伤可引起各种感觉敏感性增强的疼痛称痛觉过敏。 初级痛觉过敏产生于受损部位, 二级痛觉过敏产生于邻近未受损部位的组织、 皮肤或远距离及深部组织。 通过进一步研究痛觉过敏的产生机理表明, 初级痛觉过敏主要是由于外周受损部位神经末梢伤害性感受器不断受到刺激产生的, 而二级痛觉过敏为神经中枢尤其脊髓神经元兴奋性发生改变所致。根据测试方法及组织对不同刺激的感受, 痛觉过敏分为热痛觉过敏和机械性痛觉过敏。前者指皮肤损伤后产生持续性疼痛和痛觉过敏, 原发性痛觉过敏发生在组织损伤部位, 表现为热刺激的反应增强 ;后者指继发性痛觉过敏发生在损伤周围的正常组织,表现为对机械刺激的反应增强, 如轻触刺激诱发疼痛。 在实验室里对热刺激痛觉过敏观测, 热板法是研究动物对伤害性刺激反应的常用方法,但不太适用于神经损伤后的动物。目前较常用的是Hargreaves发明的热辐射刺激的方法。采用一定功率之辐射热,从下向上照射动物之脚底,测试其回缩潜伏期 (热刺激回缩潜伏期 ),或采用后脚浸泡方法测试一定温度下后脚回缩潜伏期。也有采用不同温度的热探头刺激以观测后脚回缩阈值。 对机械性痛觉过敏的观测, 一般可应用软毛刷或铅笔头轻触动物的皮毛以测试动物对轻触觉刺激的反应。 目前较常用的方法是应用系列的 VonFrey针丝压迫皮肤以产生不同程度的压力 (几毫克至几百克 )。动物疼痛模型包括机械刺激致痛模型 (小肠扩张模型, 输尿管结石痛模型 )、温度变化致痛模型 (热辐射刺激法,甩尾发 )、化学因素致痛模型 (扭体实验,甲醛致痛模型,角叉菜胶炎症模型,大鼠上切牙牙髓炎疼痛模型,大鼠输尿管膀胱炎症疼痛模型 )、中枢病理性疼痛模型、周围神经损伤模型 (慢性缩窄性损伤, 坐骨神经部分损伤, 脊神经选择结扎, 坐骨神经分支选择损伤 )、癌痛模型 (大鼠胫骨骨癌疼痛模型,小鼠骨癌疼痛模型 )等。兴奋性氨基酸及其受体兴奋性氨基酸的种类兴奋性氨基酸指 L-谷氨酸(glutamicacid,GLu)、L-天冬氨酸 (asparticacid,Asp)及其人工合成的类似物, 如红藻氨酸、 N-甲基 -D-天冬氨酸等, 在中枢神经系统是兴奋性神经递质。谷氨酸和天冬氨酸是哺乳动物中枢神经系统中最重要的两种内源性 EAAs,其中Glu含量最高,尤其在大脑皮层。脊髓中 Glu含量虽明显低于脑内, 但有特异性分布。 免疫组织化学研究表明,接受伤害性信息传入的的脊髓后角Ⅰ~Ⅲ板层内有大量的 EAAs存在,位于脊髓后根神节中的初级传入纤维胞体内均有 EAAs的分布,背根内的 EAAs浓度为腹根的 12~19倍。EAAs通过相应的受体参与体内各种信号传递和调节神经元的兴奋性,发挥多种作用,参与多种生理过程包括学习、 记忆和伤害性感受等。 谷氨酸不仅参与神经元的正常信息传递,还具神经毒性作用。 EAA大量释放致其受体的过度兴奋会产生兴奋性毒性而造成神经元的损伤和死亡及诸多伤害性反应。兴奋性氨基酸受体兴奋性氨基酸受体可分为离子型受体 (ionotropicglutamatereceptors,iGluRs)和代谢型受体(metabotropicglutamatereceptors,mGluRs)。前者包括N-甲基-D-天冬氨酸受体(N-Methyl-D-Aspartate, NMDA)、使君子酸(a-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate,AMPA)和红藻氨酸 (kainate,KA)型受体,AMPA受体和KA受体合称为非 NMDA受体。这三种受体都属于配体或化学门控离子通道。离子型受体: NMDA受体是离子型谷氨酸受体的一个亚型,分子结构复杂,药理学性质独特, 不仅在神经系统发育过程中发挥重要的生理作用, 如调节神经元的存活, 调节神经元的树突、 轴突结构发育及参与突触可塑性的形成等, 而且对神经元回路的形成亦起着关键的作用,是学习和记忆过程中一类至关重要的受体。 NMDA受体是由 NR1和NR2亚单元组成的离子通道蛋白, 前者有8种剪接变异体, 后者又有 8个亚单位。 是电依赖性离子通道,对 Ca2+高度通透。 NMDA受体激活的一个重要作用是钙离子内流进入突触后膜,进而引发细胞内的一系列代谢变化而导致热痛觉过敏。 AMPA受体被激活后, 可使钠离子内流和钾离子外流, 对钙离子通透性影响不大, 这一变化与许多兴奋性突触中的快速去极化作用有关。代谢型受体: 代谢型受体 (mGluRs)则是与 G-蛋白耦联, 调节细胞内的第二信使,有8个亚型即 mGluR1-8,根据其对激动剂的敏感性差异分为 3组: mGluRⅠ包括 mGluR1和mGluR5主要通过激活细胞内磷酸脂酶 C,从而使磷酸肌醇分解成三磷酸肌醇 (inositol1,4,5-triphosphate,IP3)和二酰甘油 (Diacylglycerol,DAG);mGluRⅡ(mGluR2和mGluR3)以及mGluRⅢ(mGluR4,mGluR6,mGluR7,mGluR8)两者均抑制腺苷酸环化酶,而使 cAMP合成减少。机械性痛觉过敏需要 AMPA与代谢型受体的共同激活。然而Guan等[1]研究表明, 炎性痛觉过敏大鼠延髓吻段腹内侧区的 EAAs的神经传递是按时间依赖性增加的。 EAAs受体激动剂超过一定剂量痛觉过敏反而下降。 Fujita等[2]研究表明,在疏松结扎大鼠下牙槽神经的痛觉过敏模型上, 三叉神经核尾侧 EAAs水平升高, 牙齿触痛敏感性增加。 Schmidt等[3]研究表明, NMDA受体拮抗剂地卓西平马来酸盐(dizocilpinemaleate,MK-801)可降低痛觉过敏,但可增加大鼠脑脊液里 EAAs的含量,后者可被鸟嘌呤核苷所反转。 Yan等[4]研究表明,维持脊髓水平的 EAAs和抑制性氨基酸(inhibitoryaminoacids,IAAs)的平衡是防止慢性持续性疼痛的一个新线索。 Wong等[5]研究表明,抑制 NMDA受体可抑制 EAAs的兴奋作用,降低鞘内注射百日咳毒素大鼠的吗啡诱导的抗伤害作用。3PKC与伤害性信息的传递密切相关PKC广泛存在于组织细胞,为一单体蛋白多肽链,以无活性形式存在于细胞质。目前发现哺乳类动物至少有 7种亚型,在脑及脊髓中以 γ亚型最多。 PKC具有同功酶及分布广泛的特性, 使不同的第一信使都可启动该信号转导途径。 因此,这条信号转导途径在各种生命活动中发挥广泛而重要的作用。大鼠足底注射佛氏佐剂可引起脊神经元 PKC上调并促进伤害性反应。 鞘内注射 PKC抑制剂双吲哚马来酰胺 (bisindoylmaleimideⅠ,BIM/GF109203X),可减少足底注射福尔马林引起的搔抓反应。慢性酒精饮食喂养大鼠引起的痛觉过敏可被鞘内注射 PKC抑制剂所减弱。结扎坐骨神经引起热痛觉过敏其 PKC水平明显增高。鞘内注射灯盏花素乙 (chelerythrin,CH)、 1-(5-异喹啉磺酰基)-2-甲基哌嗪[1-(5-isoquinolinesulfonyl)2-methylpiperazinedihydrochloride,H-7]等PKC抑制剂可以减弱足底注射蜂毒引起的搔抓反应及对侧热痛觉过敏。PKC兴奋剂对酞酸 (terephthalicacid,TPA)、佛波醇脂 (phorbol-12-myristate-13-acetate,PMA)可增强机械性痛觉过敏。 鞘内应用神经节苷脂 (monosialoganglioside,GM1),一种PKC抑制剂,降低伤害性痛觉行为。以上事实表明, PKC参与了痛觉过敏的形成。然而Wu等[6]研究表明,灯盏花素乙 (chelerythrine,CH)可降低鞘内注射百日咳毒素大鼠的吗啡诱导的抗伤害作用及兴奋性氨基酸的水平。 Oe等[7]研究表明,激动慢性疼痛或痛觉过敏大鼠脊髓里 PKC可减弱该动物模型吗啡诱导的奖赏效应 (rewardingeffect,亦称“正强化效应” ,指在反应后出现的能够增强那一反应的效应 )。Sweitzer等[8]研究表明, PKCε、γ(PKC亚型 )在吗啡诱导的抗伤害作用大鼠脊髓里有明显的调节作用, 类似疼痛病人停用吗啡后表现出对刺激敏感性增强或夸大痛觉反应的现象。 Lee等[9]研究表明, 选择性地阻断神经末梢代谢性谷氨酸受体 5(metabotropicglutamatereceptor5,mGluR5)、PKCε、γ受体,可以为慢性肌肉疼痛如颞颌关节紊乱症 (disordersoftemporomandibularjoint)的治疗提供新思路。Chiu等[10]研究表明,大鼠脊髓在 NMDA调控下由可卡因和安非他明调节转录肽(cocaineandamphetamineregulatedtranscriptpeptide,CARTp)产生的伤害性反应增强是通过PKC和蛋白激酶 A(proteinkinase,PKA)信号通道完成的。4NO调控着热痛觉过敏NO在神经组织中是一种新型的生物信使分子。近来研究表明, NO在热痛觉过敏中起着关键性的作用。 在福尔马林足底注射、 外周结扎坐骨神经法所致疼痛模型上, 经腹腔注射、侧脑室或口服给小鼠 NOS抑制剂NG-硝基-左旋精氨酸甲酯 (NG-nitro-L-arginine-methlester,L-NAME),均表现出明显而持久的抗伤害作用。此外,NOC-18鞘内注射后,可明显地缩短结扎坐骨神经后痛觉过敏产生的时间,此种对热痛觉过敏发展的加速效应可被血红蛋白 (hemoglobin,Hb)完全抑制,但美兰对这种加速无影响。这一结果提示 NO也可通过一氧化氮 -环磷酸鸟苷 (nitricoxide-cyclicguanosinemonophosphate,NO-cGMP)以外的通路来发挥效应。Chacur等[11]研究表明,在选择切断大鼠坐骨神经的疼痛模型上,伤害性刺激导致的脊髓内神经元型一氧化氮合酶 (neuronalnitricoxidesynthase,nNOS)增加可使 NO在病变的神经末梢内增多。 Chen等[12]研究表明,在弗氏佐剂所致热痛觉过敏的大鼠上, NOS升高使细胞因子如 α-肿瘤坏死子 (tumornecrosisfactor-alpha,α-TNF)表达上调。 Hervera等[13]研究表明,末梢应用 NO供体NOC-18可能会在阿片受体 (delta-opioidreceptor,DOR)激动剂引起的大鼠慢性疼痛中起到局部抗伤害作用。这为局部抗炎性疼痛治疗提供了可能性。Kolesnikov[14]等研究表明,在甲醛致痛的大鼠的脊髓内, nNOS的亚型(nNOS-2)作用相反,能减轻痛觉。这说明 nNOS的复杂性,可能与 nNOS的剪接变异体 (splicevariants)有关。Garrido-Suárez[15]等研究表明, 在角叉菜胶致炎性痛的大鼠模型上, 电刺激所致痛觉过敏可以被左旋精氨酸环鸟苷酸通路 (L-arginine-NOS-NO-cGMPpathway)所拮抗。5EAAs及其受体与 PKC、NO之间相互影响在致痛觉过敏因素的作用下, NMDA或其它EAA受体被激活,表达上调,引起钙离子内流,使细胞内钙离子浓度升高。细胞内钙升高可激活 NOS,使其表达增多,活性增高,进而使NO的生成增多。 NO作为细胞内信使通过 cGMP等途径进一步引起一系列变化而导致痛觉过敏。同时 NO生成也可影响 NMDA等EAA受体的功能。在培养的大鼠脑神经元中,NO可调节NMDA受体,激活并引发细胞内钙离子浓度的增加。至于PKC与NOS之间,PKC激动剂佛波醇脂 (phorbol-12-myristate-13-acetate,PMA)和抑制剂灯盏花素乙 (chelerythrine,CH)分别能促进或抑制 NOS的生成。 Hwi-Seok等[16]研究表明, NOS抑制剂L-NAME、NO敏感的鸟苷酸环化酶抑制剂 1H-[1,2,4]噁二唑[4,3-a]喹喔啉 -1-酮(1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one,ODQ)和PKC抑制剂GF109203X明显降低福尔马林所致的炎性疼痛。EAA的释放和随之 EAA受体的激活以及与之相对应的细胞内变化, 在痛觉过敏的形成中发挥了重要作用。热痛觉过敏的形成主要是 NMDA受体的激活和随之 PKC、NO.cGMP级联反应的形成 ;机械性痛觉过敏的形成主要是 AMPA与代谢性受体激活和随之的磷脂酶A2(phospholipaseA2,PLA2)和环氧合酶 (cyclooxygenase,COX)的激活。 NMDA、PKC与NO之间相互作用,共同调控着痛觉过敏。【参考文献】GuanY,TerayamaR,DubnerR,etal.Plasticityinexcitatoryaminoacidreceptor-mediateddescendingpainmodulationafterinflammation.PharmacolExpTher,2002,300:513-520.FujitaT,KamisakiY,YoneharaN.Nitricoxide-inducedincreaseofexcitatoryaminoacidlevelsinthetrigeminalnucleuscaudalisoftheratwithtactilehypersensitivityevokedbytheloose-ligationoftheinferioralveolarnerves.Neurochem,2004,91:558-567.SchmidtAP,TortAB,SilveiraPP,etal.TheNMDAantagonistMK-801induceshyperalgesiaandincreasesCSFexcitatoryaminoacidsinrats:reversalbyguanosine.PharmacolBiochemBehav,2009,91:549-553.YanLH,HouJF,LiuMG,etal.Imbalancebetweenexcitatoryandinhibitoryaminoacidsatspinallevelisassociatedwithmaintenanceofpersistentpain-relatedbehaviors.PharmacolRes,2009,59:290-299.WongCS,WuGJ,ChenWF,etal.N-Methyl-D-aspartatereceptorantagonistd-AP5preventspertussistoxin-inducedalterationsinratspinalcordsbyinhibitingincreaseinconcentrationsofspinalCSFexcitatoryaminoacidsanddownregulationofglutamatetransporters.BrainResBull,2009,80:69-74.WuGJ,WenZH,ChangYC,etal.ProteinkinaseCinhibitorchelerythrineattenuatesthemorphine-inducedexcitatoryaminoacidreleaseandreductionoftheantinociceptiveeffectofmorphineinratsinjectedintrathecallywithpertussistoxin.LifeSci,2006,78:1801-1807.OeK,NaritaM,ImaiS,etal.Inhibitionofthemorphine-inducedrewardingeffectbydirectactivationofspinalproteinkinaseCinmice.Psychopharmacology(Berl),2004,177:55-60.SweitzerSM,WongSM,TjolsenA,etal.Exaggeratednociceptiveresponsesonmorphinewithdrawal:rolesofproteinkinaseCepsilonandgamma.Pain,2004,110:281-289.LeeJS,RoJY.Peripheralmetabotropicglutamatereceptor5mediatesmechanicalhypersensitivityincraniofacialmuscleviaproteinkinaseCdependentmechanisms.Neuroscience,2007,146:375-383.ChiuHY,LinHH,LaiCC.PotentiationofspinalNMDA-mediatednociceptionbycocaine-andamphetamine-regulatedtranscriptpeptideviaPKAandPKCsignalingpathwaysinrats.RegulPept,2009,158:77-85.ChacurM,MatosRJ,AlvesAS,etal.Participationofneuronalnitricoxidesynthaseinexperimentalneuropathicpaininducedbysciaticnervetransaction.BrazJMedBiolRes,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论