版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要上段时间闹的轰轰烈烈的西安停车难事件,映射出我国大中城市停车难的问题进入普及化的阶段,再次使得我国地方政府对于城市交通管理和发展的问题受到广大民众和专家的热议。而另一方面,哈大高铁的落成和运行,体现出我国对于新兴的交通工具的发展和应用得到进一步的提升.我国在“十二五”之后,党中央、国务院对于城市交通的发展和管理的重视程度越来越大,地方政府也越来越重视解决城市交通的问题,务求令到现在各个城市都普遍存在的交通堵塞、停车难、城市交通管理水平低下等问题得到缓解和解决。而进入信息时代,对于城市交通管理的发展,则必须要紧紧地把握好新时代下创新的管理理论与先进的科技手段两者相互结合,充分发挥城市交通对于城市社会经济发展、人民安居乐业的积极作用.因此,本文着重研究我国城市管理的现状,借鉴先进城市的交通管理经验,探讨我国城市交通管理未来发展的方向与目标.关键词:城市交通管理;交通道路系统;交通管理理论;交通管理改革
ABSTRACIntheperiodoftime,parkingdifficulteventsfromXi'AnCity
reflecttheproblemsofparkingdifficultforthemostcitiesofChina,whichbecomemoreandmorepopular。
Onceagainitmakesthephenomenonoflocalgovernmentseekingthesolutionof
urbantrafficmanagementanddevelopmentoftheissueismoreinterestedbythepublicandexperts.Ontheotherhand,high—speedrailfromHarbintoDalian’pletionmeansthatChinahasbecometheleadintheapplicationofthetechnologyof
high-speedrail.
Afterthe”twelfthfive—year",itispaidmoreandmoreattentionto
thedevelopmentandmanagementofurbantrafficfromthecentreofChina。Sodoesthelocalgovernment.Theybothtrytofindthesolutiontothe
traffic,parkingdifficulty,
low
citytrafficmanagementlevel.Aftertheinformationera,
thedevelopmentofcitytrafficmanagement
mustwanttotightlyholdgoodinnovationundertheneweraofmanagementtheoryandadvancedtechnology,whicharecombinedwitheachother,making
thepositiveroleof
urbansocialeconomicdevelopmentandthepeopletoliveandworkinpeaceandcontentment.Therefore,inthispaper,wetrytofind
thepresentsituationoftheurbanmanagementinChina,
theexperienceofadvancedurbantrafficmanagementandlookoutthe
directionandgoalof
theurbantrafficmanagementforthefuturedevelopment.Keywords:CityTrafficControlandManagement;Roadtrafficsystem;theoryofTrafficmanagement;modeofTrafficmanagementﻬ目录TOC\o"1-3"\h\z\uHYPERLINK\l”_Toc358724194”1城市交通管理体制概论 PAGEREF_Toc358724194\h1HYPERLINK\l”_Toc358724195"2。我国城市交通发展现状与问题ﻩPAGEREF_Toc358724195\h2HYPERLINKisnotatechnicalproblemthatcanbesimplysolved.Predictingtheweatherisadifficultandcomplextaskandonlypossiblewithincertainlimits.Itisthereforenecessarytoobserveandforecastthechangingstateoftheatmosphereaspreciselyandasrapidlyaspossible。Moreover,measuresarerequiredthattranslate“weather”to“impact”andminimisethoseimpactsontrafficflowanditsmanagement。Toinformtrafficparticipantsandtrafficmanagementcentresinduetimeon(expected)adverseconditions,tailoredandaccuratemeteorologicalinformationisrequiredonshortnotice.Thisinformationmustbeintegratedintheprocessofinformationdistributionanddecisionmakingtoallowfortacticalaswellasstrategicdecisions.TheInstituteofAtmosphericPhysicsoftheDeutschesZentrumfürLuft-undRaumfahrt(DLR)inOberpfaffenhofen,Germany,andthecompanyHydrometeorologicalInnovativeSolutionsS。L。(HYDS)inBarcelona,Spain,developameteorologicaldecisionsupportsystemforaviation(MEDUSA)withintheEU’sPeopleProgramme,Industry-AcademiaPartnershipsandPathways,andDLR’sResearchActivity“WeatherOptimisedAirTransportation”。Itsgoalistoaugmentsafetyandefficiencyofairtransportation。Manyofthedevelopedmethodsfocusonthegroundleveland,therefore,canwellbeadaptedandappliedforweatherdictatedissuesinroadtransportation,too.Wedemonstrateourlogic,firstdevelopedfortheaviationtransportsector,tocombinevariousmeteorologicalparameterstosimple,self—explainingweatherobjects.Furtherwereportonrecentdevelopmentstodeterminetheonsetanddurationoficingconditionsatthesurface.Analgorithmaimsatdetectingpotentialareasofsnowfallbycombiningscanningreflectivitydataofprecipitationandsurfacetemperaturedatafromanumericalmodelaswellassurfacestationsinhighspatialresolution(1km).Anotherapproachcombinesprofilingmeasurements(e.g。,meteodatameasuredbyaircraftandpolarimetricradardata)withnumericalweatherforecastproducts。Forforecastingwinterweatherconditionsuptoabout24hoursormore,onecanrelyonoperationalnumericalforecastmodels.Numericalmodelshavemaderemarkableprogressduringthelastfewyearsinforecastingtheoverallweatherstate,e.g。thesurfacepressuredistributionorwhetheritwillrainornot.Theforecastofwinterweatherphenomena,however,likefreezingrainordrizzle,orlightorheavysnowfallisstillademandingtask。Thesephenomenaresultfromthesubtleinterplayofvariousfactors,liketheverticaldistributionoftemperatureandhumidity,cloudcoverandtype,snowcover,soilmoistureandthecompositionoftheatmospherewitsolswhichagaininfluencecloudandprecipitationprocesses.Thesituationgetsevenmorecomplicatedastheseprocessesresultfrominstabilitieswhicharetriggeredbysmallchangesintheatmosphericparameters,e.g。whetherthetemperatureatthegroundorthroughacertaindepthoftheatmosphereisslightlyaboveorbelow0°C.Inordertobetterestimatethefutureatmosphericstateensemblemodelsgivebetterguidancethanasinglemodelrun。Combinedquantitieslikeensemblemean,spreadandothersallowprobabilitiestobeestimatedwhichcanbeusedforadvancedplanning.HereoutputoftheKENDAensemblemodelfromtheGermanMeteorologicalService,DWD,canbeusedinfuturetoprovidethisprobabilityinformation.However,inordertomitigatetheimpactofwintryweatherconditionsonairportoperationsmoreefficiently,thefocusshouldbelaidonshort-termforecasting(termed“nowcasting”)theseconditions.Thiscomprisestheonset,durationandtypeofprecipitationasrain,snow,freezingrain,orfog。DLRisdevelopinganowcastingsystemthatprovidesusersinaviationwith0to2hourforecastsofthesewinterweatherconditions[8].Wearguethatasimilarsystemimbeddedintheprocessofinformationsharingforcollaborativedecisionmakingwouldalsobebeneficialforoperationsonroadnetworks。2WINTERWEATHEROBJECTSAcertainwinterweatherphenomenon,likee.g。freezingprecipitation,canbethoughtofacertainvolumeofairwithinwhichthisphenomenoncanbeobserved.Variousobservationsaresuitedfordescribingoneortheotherattributeofthatphenomenon,ase。g。thesurfacetemperature,theprecipitationtype。Withnodoubttheactualweatherphenomenoncanbedeterminedmorepreciselywhendatafromvarioussensorsarecombined[7]。Itisthereforeadvisabletothinkofsuchvolumesasweatherobjectswithcertaininherentattributes.Forourpurposes,awinterweatherobject(WWO)inacertainlimitedarea,e.g.anairportoradensemotorwwork,canbedefinedthroughthefollowingparameters:•averticalcolumnofairconsistingofseverallayers•issuedtime•validtime•nextupdatetime•layerdescription,e。g.:-Snow:upperandlowerboundarywithintensity:light,moderate,severe—Rain:upperandlowerboundaryensity:light,moderate,severe-Freezingrain:upperandlowerboundary-Freezingdrizzle:upperandlowerboundary•surfaceconditions•trends,e.g。intensityincreasing,changetomelting,etc.Figure1sketcheshowweatherparametersfromvarioussourcesarecombinedbydatafusiontoawinterweatherobject,WWO(yellowcylinder),withdifferentattributesindifferentlayers.SYNOPandautomaticsensors(asfromSWIS)allowdeterminingsurfaceconditions,inthisexamplerainwithtemperatureabovezero。Thetemperature/humiditysoundingcanbeprovidedfromanumericalweatherforecastmodel,aircraftmeasureddata(AMDAR),orconstructedfrombothdependingondataavailability.Radarsobservetheprecipitationheightandmayalsobeabletodeterminethehydrometeorswithinthecloud(polarimetriccapabilityandrelatedalgorithms).ADWICE–theAdvancedDiagnosisandWarningSystemforIcingEnvironments–[6,4]usestheinformationofreportedweatheratthegroundtogetherwiththesoundingsoftemperatureandhumidityandradarmeasurementstodeterminetheicingthreattoaircraftinflight。ADWICEisnowfurtherexpandedtodiagnoseandpredictsnowandicingconditionsatthesurface,too,seefollowingSection.Takentogether,thederivedanalysiscanbecompactedintotheWWOwhichisshownschematicallyasayellowcylinderontherightofFigure1.Itisobviousthattheobjectcanhaveseveraldifferenthazardlayersinthevertical。ForthegivencasetherewouldbeanearsurfacelayerwithtemperaturesabovefreezinguptoheightH1whichcontainsraindrops,asecondlayerfromH1toH2whichcontainssuper-cooleddropletswithcorrespondingicingthreat,andaprecipitatingcloudlayerontop。Fornowcastingicing&snowconditionsatthesurfaceonehastoconsiderweatherchangesduetoadvectionofairwithdifferentcharacteristicsand,especiallydemanding,possiblechangesresultingfromprecipitationandcloudphysicsprocesseswhichcanoccurwithinshorttimespansattheobservationsite.ForcapturingbothoftheseeffectsanapproachisfollowedwhereWWOsaredeterminedatthevariousobservationsitesaroundanairportoralongmotorwayswheredatafromSYNOP,radarandSWISstationsareavailable.ChangesinWWOsaroundthelocationcanthenprovideguidancefortheexpectedchangeatthelocation。3DIAGNOSISANDPROGNOSISWITHADWICEADWICEstandsforAdvancedDiagnosisandWarningsystemforaircraftIcingEnvironments。BasedontheexpertsystemIIDA(IntegratedIcingDiagnosticAlgorithm)byNCAR/RAP[4],todetectandpredictcloudsandprecipitationwithsupercooledliquidwater,ithasbeendesignedatDLRinOberpfaffenhofenin2003[6]andfurtherdevelopedbytheGermanMeteorologicalService(DWD)[3].Itspurposeisthedetectionandforecastofareaswithsupercooledlargedroplets(SLD)andpossiblethreedimensionalicingareas,respectively,whichposeasignificantthreattoaircraft.ADWICEprovidesadiagnosticproceduretoanalysethecurrenticingsituationoftheinvestigatedpartoftheatmosphere.Figure2schematicallyillustratestheproceedingofthediagnosticpartofADWICE.Themostimportantinformationisgroundmeasurementsreceivedfromobservationsites.ThecurrentversionofADWICEusesobservationsofthepresentweatheraswellasthecloudamountandanestimationofthecloudbaseheight。Incombinationwithradarreflectivitymeasurements,thesedataareusedtogetafirstguessinformationforacertainicingscenarioabovetheobservationsites。Atstationswherethesedataindicateanicingweathersituation,theADWICEalgorithmisusedtosearchfortheverticalextendofthepossibledangerzone。Onthebasisofobservedormodelforecasfilesofhumidityandtemperatureaswellassomederivedconvectionparameters,likecloudbaseheightandcloudthicknessorspecificcloudwaterandcloudicecontent,theicingalgorithmisdesignedtodetectpossibleicingareas.Fourdifferenticingscenariosareclassified,whichrestupondifferenttypesofformationprocesses。Forexample,theicingscenariofreezingdescribesthetypicalformationprocessofsupercooledrain.Itismainlycharacterizedbyawarmatmosphericlayer(temperaturesabove0°Celsuis)embeddedincolder(T<0°C)layersorabovethecoldground.Solidprecipitationexperiencesaphasetransformationfromsolidtoliquidinthewarmlayerandgetssupercooledincoldlayerbeneathoronthegroundwithoutchangingthephaseagain.IntheprognosticpartofADWICEsolelytheoutputofanumericalweatherpredictionmodelisusedtoforecastthreedimensionalareaswiththepossibleoccurrenceofsuper—cooleddroplets。ThecurrentversionofADWICE,whichisoperationallyusedbyDWD,isoperatingwiththeoutputoftheCOSMO—EUmodel.Twiceadayhourlyicingpredictionsupto21forecasthoursarecreated。Figure3illustratestheoperationalprocessing。Theprognosticalgorithmisstartedat03UTConthebasisofthe00UTCmodelrunandat15UTConthebasisofthe12UTCmodelrun。WeareabouttomodifyADWICEbyusingthelocalarea,highresolutionnumericalweatherpredictionmodelCOSMO—DE。ItcoverstheareasofGermany,Switzerland,Austriaandpartsoftheirneighbouringcountriesandhasahorizontalresolutionof2.8km.IncontrasttotheregionalmodelCOSMO-EU,COSMO-DEisabletoexplicitlysimulate(large)convectiveprocesses.AmajorchangeintheprognosticpartwillbetheuseofsomedirectlyderivedconvectionparametersoftheCOMSO-DEmodel.Alsothediagnosticicingproductwillbeenhancedfurtherthroughthecombinationwithadditionallocaldata.Forexample,measuredprofilesfromstartingandlandingaircraftinsteadoffileswillbeappliedaswellaspolarimetricradardatafromPOLDIRADinsteadofconventionalradarinformation(Europeanradarcomposite)。Whereavailable,alsosurfacedatafrom‘Strassenwetterinformationssystem–SWIS'alongmajorhighwayswillgiveinformationonfreezingconditions.Theobservationofpresentweather,cloudamountandcloudbaseheightwillfurthermorebeusedafterthemodifications.4NOWCASTOFPOTENTIALSNOWFALLAREASTonowcastpotentialareasofsnowfallinaregionweutilize•Synoptic(largescale)mapsof1000-500hPaand1000-850hPathicknessprovidingtheregionofcoldairobtainedfromMETAR(standardhourlyobservation)ornumericalweatherprediction(NWP)models•Surfacetemperaturebelow/above0~2°Cor/andwet—bulbtemplessthan0°CbasedonNWPmodeloutputsandobservation•Volumetricradarreflectivityobservation•Snowdepthmeasurement•Soundingsfromradiosondeandaircraftmeasurementsor/andnumericalweatherpredictionmodels.SIRWEC2012,Helsinki,23—25May20125ThePotentialSnowFallArea(PSA)algorithmisbasedonreal—timehourlyoperationaldata,likeregionalmodelsurfacetemperature,precpositeestimatedfromlow-levelradarscans,andsurfaceobservations.Thisallowsthattheoutput,awarningintermsofPSA,canbegeneratedinreal—timeandatlow-cost.Also,theoutputcanbeusedinbuildingmorecomplicatedalgorithmsofwinterweatherwarningsbasedonvariousothersources(e。g.,theADWICEintroducedintheprevioussection).4.1DatasourcesThealgorithmisconstructedwithdataavailableoverCataluñaincluding1)terrainheightfromDEM,2)temperaturefrommodel,surfacestation,soundings,and3)radarreflectivity.ThedeploymentoftheobservationalsourcesisshowninFigure4overlaidonorography.Moredetailoneachsourceisprovidedinthefollowingpoints。Figure4。DataavailablearoundBarcelonaoverorography:CrossesindicatethelocationofCDV-RadarandAirportBarcelona.Similarly,largediamondforAEMETsurfacestations,smalldiamondforSMCsurfacestations,andtrianglesforsoundings.Digitalelevationmodel(DEM)datausedherearefromASTERGDEM(AdvancedSpace-borneThermalEmissionandReflectionRadiometerGlobalDigitalElevationModel1)whichhasahorizontalresolutionof1arc—second,bothinlongitudeandinlatitude。Thishigh—resolutionterrainheightisre-mappedwithagridspacingof0.01°inthehorizontalasshowninFigure4andusednotonlyasthebackgroundoftheoutputbutalsofortheadjustmentofatmospherictemperatureinthevertical。SurfaceStations:Inreal—time,surfacestationdata(e。g.,temperature[°C],relativehumidity[%],andprecipitation[mm/h])at2mheightwereavailableevery10minutesfromLaAgenciaEstataldeMeteorología(AEMET)overtheIberianPeninsulaaswellasfromtheadditionaldensernetworkofsurfacemeasurementsofServeiMeteorològicdeCataluña(SMC)overCataluña。However,fortheselectedcase,thesewereprovidedinhourlyupdatedvalues.Radarreflectivity:Real-timeandqualitycheckedradarreflectivityfieldsat0.5°elevationanglearegeneratedwithSMC’sCDVoperationalC-bandradar。Thealgorithmtakesinstantaneousscanscorrespondingtotheforecasttime(e.g。,1hourforecast)with0.01°gridspacing.Numericalweatherpredictionmodel:ThemodeloutputforthesurfaceisgeneratedovertheIberianPeninsulabymeteoblueAG,aprivatecompanythatrunsNMM(Non—hydrostaticMesoscaleModel[2])in13-kmspatialresolutiontwiceadaywith1-hourforecastupto72hours。4.2AnalysisofpotentialsnowareaThePSAisdeterminedmainlybasedontemperature(obtainedfrombothmodeloutputandsurfacestations)andprecipitation(obtainedfromradarreflectivityand/ormodeloutput)atnear-groundlevel.Thealgorithminterpolateseachinputfieldontothecommongridwith0。01°by0.01°resolutionandmodifiesthemodeltemperaturefieldbyheightadjustmentsandtakioaccountthemeasuredtemperatures。Thespatialvariability(orthestructure)ofthetemperatureisobtainedfromthemodeloutput.Figure5showsapreliminaryresultofapotentialsnowfallareadeterminedwiththethresholdsoftemperature〈2°Candradarreflectivity>15dBZshownaslightyellowfilledareasfor08March2010at14:00UTC。Atthisanalysistime,itsnowedinthecityofBarcelona,whichisnotcapturedusingonlythemodeltemperature(Figure5a).Ontheotherhand,afterthemodification(Figure5b),theselectedareabecomesmorerealistic,suggestingthatsuchinterpolationcanbeusefulwhenerroneousmodeloutputsareusedinthePSA.Crossvalidationoftheinterpolationtechniquewillbeperformedoverlonger-termperiodinthefuture.Figure5:PotentialSnowAreas(inyellowishfilled-contour)at14:00UTC08Mar2010:a)modeltemperatureonly,b)aftermodification.Greybackgroundisorography,diamondsaresurfacestations,andtheircolorscorrespondtotemperature[°C]showninthecolorBar。Bluishfilledcontourindicatesreflectivitylargerthan15dBZ。4。3ForecastofpotentialsnowareaTheforecastupdatefrequencydependsontheupdatetimeofobservationaldata,andtheforecastlead—timedependsonthoseofthemodelandtheradarprecipitationnowcasting.Fourforecaststrategiesareproposed:A.Model:Itisinitializedat00and12UTCandactualizationisbetween4and6hourafterinitialization.Inotherwords,forverificationtimeat00UTC,amodelrunischosenatlead—time12houroftherunsinitializedpreviouslyat—12UTC.Ontheotherhandforverificationtimeat06UTC,themodelrunischosenfromtherunsinitializedat00UTC.B。Modeltendency(Mtendency):Tendencyisreferredtoastheforwardchangesofmodeltemperatureintime(°C/hour).Althoughthemodelvaluesmaybewrong,theirchangesintimestillrepresentapartofreality。Hence,extrapolationofacorrectedinitialconditioncanbeperformedusingthecomputedtendencyfrominitialtimetoeachlead—time。Here,thestationtemperatureisusedastheinitialvalue(forecastleadtimezero;FLT0hereafter).C。Conditionalmerging(CM):Thisstrategyassumesthattheinitialobservationpersistsinthefutureandonlytheforecastedspatialvariabilityofthetemperaturefieldisused。Thisfrozenrealityassumptionmayworkforshortleadtimes(2to3hours)becauseitreflectstherealitybetterthanthemodelinitialized12~6hoursearlier.Ofcourse,quickchangesasinfrontalpassageswouldreducetheuseablelead—time.D.Relaxation:Aweightingfunctionisapplied[1],wheretheobservationdatahaveahigherweightthanthemodeldataforshortforecastleadtimesandviceversaforlongerleadtimes.Figure6showsanexampleofatemperature-forecastverificationintermsofmeanabsoluteerrorforthedifferentmodelstrategies.Forthisparticularcase,theconditionalmergingstrategyCseemstobemoreaccuratethanusingmodelonlystrategyAormodeltendencystrategyB.Uptonow,thealgorithmhasbeentestedwithoneeventonly。Along-termverificationoftemperature,precipitationandpotentialsnowfallareanowcastswillbeperformedinthefuture.5CONCLUSIONSANDOUTLOOKAlgorithmstodiagnoseandnowcastsnowfallandicingconditionsinlimitedareashavebeendescribed.Providingend—usersadequateandeasytounderstandgroundlevelwarningsforwinterprecipitationatalocalpositionorareaisnotaneasytask.Besidestheproblemofunderstandingandmodellingcomplexphysicalprocesseslikeicing,snowformationandprecipitationtotheground,alsothecombinationofdatafromdifferentsourcessuchasradar,satellite,andsurfacestationswithmodeloutputsisabigchallenge。Notonlyaremodelforecastsofteninaccurate,butalsoobservationscanbedifficulttohandlebecauseofregionallydifferentdataavailability,dataqualityandobservationrepresentativenessduetothedifferenttemporalandspatialresolutionsandstationheights。Itisexpectedthattheexperiencegainedfrommanywinterweathercaseswillenablethebuild-upofafuzzylogicprocedurewhichcanimprovethenowcastingofwinterweatherandthusprovideareliablesourceofinformationfordecisionmakersinaviationaswellasgroundtransportationsectors.6REFERENCES[1]Haiden,T。,A.Kann,G.Pistotnik,K。Stadlbacher,andC.Wittmann,2009:IntegratedNowcastingthroughComprehensiveAnalysis(INCA)-Systemdescription。ZAMGRep。,ZentralanstaltfürMeteorologieundGeodynamik,Vienna,Austria,60pp.[Availableonlineathttp://www.zamg。ac.at/fix/INCA_system.pdf。][2]Janjic,Z。I.andJ.P.Gerrtty,2001:Analternativeapproachtononhydrostaticmodelling。Mon.Wea.Rev。,129,1164-1178.[3]Leifeld,C.,2004:WeiterentwicklungdesNowcastingsystemsADWICEzurErkennungvereisungsgefährdeterLufträume.BerichtedesDt.Wetterdienstes,224[4]McDonough,F.,B.Bernstein,1999:Combiningsatellite,radarandsurfaceobservationswithmodeldatatocreateabetteraircrafticingdiagnosis.8thConferenceonAviation,RangeandAerospaceMeteorology,10–15Jan。1999,AMS,Dallas,Texas,467–471[5]Schraff,C。,H.Reich,A.Rhodin,R.Potthast,U.Blahak,K.Stephan,Y.Zeng,D.Epperlein,D。Leuenberger,T.Weusthoff,M.Tsyrulnikov,V.Gorin,A。Iriza,M.Lazanowicz,L,Torrisi:2011COSMOPriorityProjectKENDAforKm-ScaleEnsemble—BasedDataAssimilation,9thSRNWPWorkshoponNonhydrostaticModelling,BadOrb,16–18May2011[6]Tafferner,A.,T。Hauf,C.Leifeld,T.Hafner,H.Leykauf,U.Voigt,2003:ADWICE–AdvancedDiagnosisandWarningSystemforAircraftIcingEnvironments.Wea.Forecasting,18,184–203[7]Tafferner,A.,Hagen,M。,Keil,C。,Zinner,T。andVolkert,H.,2008,DevelopmentandpropagationofseverethunderstormsintheupperDanubecatchmentarea:Towardsanintegratednowcastingandforecastingsystemusingreal—timedataandhigh—resolutionsimulations,MeteorologyandAtmosphericPhysics,101,211—227,DOI10.1007/s00703-008—0322-7[8]TaffernerA.,KeisF.2012:NowcastingwinterweatheratMunichairport.In:TheDLRProjectWetter&Fliegen,eds。T。Gerz&C。Schwarz,FinalResearchReportDLR-FB2012-02,46-57.
附录(翻译)论准时定制的冬季天气信息系统与城市交通道路管理摘要最近,在技术上,确定冬季开始、持续时间、降水量、积雪和结冰条件等研究有了新的发展报告和进程,而这个技术,还仍然处于开发阶段,将来能在短短的30分钟到几日小时内用来预测在短期至中期的天气情况。(即实时天气报告)这种技术旨在从一个数值模型以及在高空间分辨率地面气象站,检测地区潜在的降雪反射率数据相结合的降水和地表温度数据.另一方面用此技术结合分析测量结果从而预测天气预报.(如:衡量飞机数据和偏振雷达数据)关键词:类型和降水量实时预测预测天气一.介绍不好的天气会导致交通堵塞,交通事故和交通延误。道路交通尤其被不利的天气如雪、冰、雾、雨、大风所耽误和影响.交通的发展使得交通更加容易受到不利天气条件影响。如今,当恶劣天气时的反应已经发生或即将发生时,与交通运输有关的人和参与运输者(包括空运的或地面)大部分的时间才有受到影响.而未来的道路管理系统应该主动预见破坏性天气元素和大大提前预报的尺度,以避免或减轻对交通流的影响。然而“天气”本身不是一个可以简单轻松地解决的技术问题。天气的预报是一个困难和复杂的任务,某些程度上会受到相当大的限制.因此非常有必要尽快观察和预测大气的变化状况,提高天气预报的准确程度。此外,措施的要求是能预测到“天气"及其影响和减少这些影响对交通流及其管理的管理。交通参与者和交通管理中心在合适的时间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶文化与茶艺鉴赏 教案 项目一 寻茶源-中国茶文化
- 2024年饮料服务项目资金申请报告代可行性研究报告
- 光的折射全反射现象教案
- 分析仪器维护教案
- 组合式炉篦条编制说明
- 上海市县(2024年-2025年小学五年级语文)统编版综合练习(下学期)试卷及答案
- 二年级数学(上)计算题专项练习汇编
- 高一英语上册全册教案unit-8-sports
- 微营销培训教材
- 新建加油站(船)符合规划确认申请表
- 动物园安全培训课件
- 电动车与充电桩的火灾安全防范课件
- 爱学习爱祖国爱劳动
- 华住集团测评题
- 旅游小程序策划方案
- 医用化学实验
- 呼吸系统疾病学教案:呼吸系统疾病的诊断与治疗
- 员工试用期转正评估问卷调查(360评估)
- 灼烫事故培训课件
- 勇往直前追逐梦想主题班会课件
- 皮肤科护士的皮肤损伤护理技术
评论
0/150
提交评论