版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路·数学路漫漫其修远兮吾将上下而求索人教A版·必修5成才之路·数学路漫漫其修远兮吾将上下而求索人教A版·3.1不等关系与不等式
(二)3.1不等关系与不等式
(二)1.用不等式或不等式组表示不等关系.3.比较两个代数式的大小——作差比较法→判断符号作差→变形→得出结论复习回顾1.用不等式或不等式组表示不等关系.3.比较两个代数式的证明:性质1表明,把不等式的左边和右边交换位置,所得不等式与原不等式异向,我们把这种性质称为不等式的对称性。性质1:如果a>b,那么b<a;如果b<a,那么a>b.不等式的性质证明:性质1表明,把不等式的左边和右边交换位证明:(传递性)
这个性质也可以表示为c<b,b<a,则c<a.这个性质是不等式的传递性。性质2:如果a>b,b>c,那么a>c.证明:(传递性)这个性质也可以表示为c<b,证明:
性质3表明,不等式的两边都加上同一个实数,所得的不等式与原不等式同向.a+b>ca+b+(-b)>c+(-b)a>c-b.结论:不等式中的任何一项都可以改变符号后移到不等式另一边(移项法则)性质3:如果a>b,则a+c>b+c.证明:性质3表明,不等式的两边都加上同一个实证明:性质4:如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc.性质5:如果a>b,c>d,则a+c>b+d.证明:因为a>b,所以a+c>b+c,又因为c>d,
所以b+c>b+d,根据不等式的传递性得a+c>b+d.
几个同向不等式的两边分别相加,所得的不等式与原不等式同向.证明:性质4:如果a>b,c>0,则ac>bc;如果a>b,性质6:如果a>b>0,c>d>0,则ac>bd.证明:因为a>b,c>0,所以ac>bc,又因为c>d,b>0,所以bc>bd,根据不等式的传递性得ac>bd几个两边都是正数的同向不等式的两边分别相乘,所得的不等式与原不等式同向.性质6:如果a>b>0,c>d>0,则ac>bd.证明:因为性质7:性质7说明,当不等式两边都是正数时,不等式两边同时乘方所得的不等式和原不等式同号.性质8:性质8说明,当不等式的两边都是正数时,不等式两边同时开方所得不等式与原不等式同向.以上这些关于不等式的事实和性质是解决不等式问题的基本依据性质7:性质7说明,当不等式两边都是正数时,不1.对于实数判断下列命题的真假(1)若则(5)若则(3)若则(4)若则假(2)若则真假假真注:(1)运用不等式的性质时,应注意不等式成立的条件。(2)一般地,要判断一个命题为真命题,必须严格加以证明,要判断一个命题为假命题,可举反例,或者由题中条件推出与结论相反的结果。思考1.1.对于实数判断下列命题的真假(1)若例1.已知a>b>0,c<0,求证.>证明:因为a>b>0,于是即由c<0,
得,即所以ab>0,>0.思考?能否用作差法证明?例1.已知a>b>0,c<0,求证例2.应用不等式的性质,证明下列不等式:(1)已知a>b,ab>0,求证:;证明:(1)因为ab>0,所以又因为a>b,所以即因此例2.应用不等式的性质,证明下列不等式:(1)已知a>b,a(2)已知a>b>0,0<c<d,求证:证明:因为0<c<d,根据(1)的结论得又因为a>b>0,所以即(2)已知a>b>0,0<c<d,求证:证明:因为0<c<d不等式的证明
不等式的证明《不等关系与不等式》第二课时复习进程课件《不等关系与不等式》第二课时复习进程课件
若二次函数y=f(x)的图象关于y轴对称,且1≤f(1)≤2,3≤f(2)≤4,求f(3)的范围.利用不等式的性质求取值范围 若二次函数y=f(x)的图象关于y轴对称,且1≤f(1)≤[方法规律总结]
求取值范围的问题要注意解题方法是否符合不等式的性质,是否使范围扩大或缩小.[方法规律总结]求取值范围的问题要注意解题方法是否符合不等
某单位组织职工去某地参观学习,需包车前往.甲车队说:“如果领队买全票一张,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两车队的收费标准、车型都是一样的,试根据此单位去的人数,比较两车队的收费哪家更优惠.[分析]
依据题意表示出两车队的收费,然后比较大小.不等式的实际应用 某单位组织职工去某地参观学习,需包车前往.甲车队说:“如果《不等关系与不等式》第二课时复习进程课件1.已知a>b,不等式:(1)a2>b2;(2);(3)成立的个数是()(A)0(B)1(C)2(D)3A2.如果a>b>0,c>d>0,则下列不等式中不正确的是()A.a-d>b-cB.C.a+d>b+cD.ac>bdC练习1.已知a>b,不等式:(1)a2>b2;(2)3.当a>b>c时,下列不等式恒成立的是()A.ab>acB.(a-b)∣c-b∣>0C.a∣c∣>b∣c∣D.∣ab∣>∣bc|B18<x-2y<32,(2)若-3<a<b<1,-2<c<-1,求(a-b)c2的取值范围.
因为-4<a-b<0,1<c2<4,所以-16<(a-b)c2<03.当a>b>c时,下列不等式恒成立的是()B15.5.求:的取值范围.已知:函数解:因为f(x)=ax2-c,所以解之得求:的取值范围.已知:函数解:因为f(x)=ax2-c,所以所以f(3)=9a-c=因为所以两式相加得-1≤f(3)≤20.还有其它解法吗?提示:整体构造利用对应系数相等试一试,答案一样吗?本题中a与c是一个有联系的有机整体,不要割断它们之间的联系注意:所以f(3)=9a-c=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络实习报告范文合集六篇
- 云南省昭通市昭阳区2024-2025学年八年级上学期1月期末考试历史试卷(无答案)
- 形容噩梦的诗句
- 国培个人研修参考计划范例
- 钢筋材料运输合同
- 出租车大包租赁合同
- 广州写字楼租赁合同范文
- 个人大众汽车出租合同
- 档口租赁合同样板
- 2024年软件开发与应用合同
- 2023-2024学年广东省深圳市光明区高二(上)期末地理试卷
- 【8地RJ期末】安徽省芜湖市弋江区2023-2024学年八年级上学期期末考试地理试卷(含解析)
- 期末(试题)-2024-2025学年人教PEP版英语六年级上册
- 2024年公安基础知识考试题库及答案
- 三创赛获奖-非遗文化创新创业计划书
- 教你成为歌唱达人智慧树知到期末考试答案2024年
- 2024分娩镇痛ppt课件完整版
- 酒店水单模板
- SCI论文写作课件
- 典型6B燃机技术协议书A_Rev_0527
- 曲式分析演唱技巧情感运用
评论
0/150
提交评论