版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Options,Futures,andOtherDerivativesEleventhEditionChapter15TheBlack–Scholes–MertonModelCopyright©2022,2018,2012PearsonEducation,Inc.AllRightsReservedTheStockPriceAssumptionConsiderastockwhosepriceisS.Inashortperiodoftimeoflengththereturnonthestockisnormallydistributed:whereisexpectedreturnandisvolatility.TheLognormalProperty(Equations15.2and15.3)ItfollowsfromthisassumptionthatSincethelogarithmofisnormal,islognormallydistributed.TheLognormalDistributionContinuouslyCompoundedReturn(Equations15.6and15.7)Ifxistherealizedcontinuouslycompoundedreturn,TheExpectedReturnTheexpectedvalueofthestockpriceisTheexpectedreturnonthestockisThisisbecausearenotthesame.muminusstartfractionsigmasquaredover2endfraction
istheexpectedreturninaveryshorttime,expressedwithacompoundingfrequencyof
istheexpectedreturninalongperiodoftimeexpressedwithcontinuouscompounding(or,toagoodapproximation,withacompoundingfrequencyofMutualFundReturns(BusinessSnapshot15.1)Supposethatreturnsinsuccessiveyearsare:Thearithmeticmeanofthereturnsis14%.Thereturnedthatwouldactuallybeearnedoverthefiveyears(thegeometricmean)is12.4%(ann.comp.)Thearithmeticmeanof14%isanalogoustoThegeometricmeanof12.4%isanalogoustoTheVolatilityThevolatilityisthestandarddeviationofthecontinuouslycompoundedrateofreturnin1year.ThestandarddeviationofthereturninashorttimeperiodtimeisapproximatelyIfastockpriceis$50anditsvolatilityis25%peryearwhatisthestandarddeviationofthepricechangeinoneday?EstimatingVolatilityFromHistoricalDataTakeobservationsatintervalsofyears(e.g.forweeklydataCalculatethecontinuouslycompoundedreturnineachintervalas:Calculatethestandarddeviation,s,oftheThehistoricalvolatilityestimateis:NatureofVolatility(BusinessSnapshot15.2)Volatilityisusuallymuchgreaterwhenthemarketisopen(i.e.theassetistrading)thanwhenitisclosed.Forthisreasontimeisusuallymeasuredin“tradingdays”notcalendardayswhenoptionsarevalued.Itisassumedthatthereare252tradingdaysinoneyearformostassets.ExampleSupposeitisApril1andanoptionlaststoApril30sothatthenumberofdaysremainingis30calendardaysor22tradingdays.ThetimetomaturitywouldbeassumedtobeTheConceptsUnderlyingBlack-Scholes-MertonTheoptionpriceandthestockpricedependonthesameunderlyingsourceofuncertainty.Wecanformaportfolioconsistingofthestockandtheoptionwhicheliminatesthissourceofuncertainty.Theportfolioisinstantaneouslyrisklessandmustinstantaneouslyearntherisk-freerate.ThisleadstotheBlack-Scholes-Mertondifferentialequation.TheDerivationoftheBlack–Scholes–MertonDifferentialEquation(Equations15.10and15.11)WesetupaportfolioconsistingofThisgetsridofthedependenceonTheDerivationoftheBlack-Scholes-MertonDifferentialEquation(Equation15.12and5.13)Thevalueoftheportfolio,isgivenbyThechangeinitsvalueintimeisgivenbyTheDerivationoftheBlack-Scholes-MertonDifferentialEquation(Equation15.15and5.16)Thereturnontheportfoliomustbetherisk-freerate.Hence,WesubstituteforinthisequationtogettheBlack-Scholesdifferentialequation:TheDifferentialEquationAnysecuritywhosepriceisdependentonthestockpricesatisfiesthedifferentialequation.Theparticularsecuritybeingvaluedisdeterminedbytheboundaryconditionsofthedifferentialequation.InaforwardcontracttheboundaryconditionisThesolutiontotheequationisPerpetualDerivative(Equation15.17)ForaperpetualderivativethereisnodependenceontimeandthedifferentialequationbecomesAderivativethatpaysoffQwhenS=Hisworth(Thesevaluessatisfythedifferentialequationandtheboundaryconditions.)TheBlack–Scholes–MertonFormulasforOptions(Equations15.20and15.21)TheNofxFunction
istheprobabilitythatanormallydistributedvariablewithameanofzeroandastandarddeviationof1islessthanx.Seetablesattheendofthebook.PropertiesofBlack–ScholesFormulaAsbecomesverylarge,
ctendstoandptendstozero.Asbecomesverysmall,c
tendstozeroandptendstoWhathappensasbecomesverylarge?WhathappensasTbecomesverylarge?UnderstandingBlack–ScholesPresentvaluefactorProbabilityofexerciseExpectedstockpriceinarisk-neutralworldifoptionisexercisedK:StrikepricepaidifoptionisexercisedRisk-NeutralValuationThevariabledoesnotappearintheBlack-Scholes-Mertondifferentialequation.Theequationisindependentofallvariablesaffectedbyriskpreference.Thesolutiontothedifferentialequationisthereforethesameinarisk-freeworldasitisintherealworld.Thisleadstotheprincipleofrisk-neutralvaluation.ApplyingRisk-NeutralValuationAssumethattheexpectedreturnfromthestockpriceistherisk-freerate.Calculatetheexpectedpayofffromtheoption.Discountattherisk-freerate.ValuingaForwardContractwithRisk-NeutralValuationPayoffisExpectedpayoffinarisk-neutralworldisPresentvalueofexpectedpayoffisProvingBlack–Scholes–MertonUsingRisk-NeutralValuation(AppendixtoChapter15)whereistheprobabilitydensityfunctionforthelognormaldistributionofinarisk-neutralworld.Wesubstitutesothatwherehistheprobabilitydensityfunctionforastandardnormal.EvaluatingtheintegralleadstotheB
S
Mresult.ImpliedVolatilityTheimpliedvolatilityofanoptionisthevolatilityforwhichtheBlack-Scholes-Mertonpriceequalsthemarketprice.Thereisaone-to-onecorrespondencebetweenpricesandimpliedvolatilities.Tradersandbrokersoftenquoteimpliedvolatilitiesratherthandollarprices.TheV
I
XS&P500VolatilityIndex(Figure15.4)Chapter26explainshowtheindexiscalculated.AnIssueofWarrantsandExecutiveStockOptionsWhenaregularcalloptionisexercisedthestockthatisdeliveredmustbepurchasedintheopenmarket.WhenawarrantorexecutivestockoptionisexercisednewTreasurystockisissuedbythecompany.Iflittleornobenefitsareforeseenbythemarket,thestockpricewillreduceatthetimetheissueisannounced.Thereisnofurtherdilution(SeeBusinessSnapshot15.3.).TheImpactofDilutionAftertheoptionshavebeenissueditisnotnecessarytotakeaccountofdilutionwhentheyarevalued.BeforetheyareissuedwecancalculatethecostofeachoptionastimesthepriceofaregularoptionwiththesametermswhereNisthenumberofexistingsharesandMisthenumberofnewsharesthatwillbecreatedifexercisetakesplace.DividendsEuropeanoptionsondividend-payingstocksarevaluedbysubstitutingthestockpricelessthepresentvalueofdividendsintoBlack-Scholes.Onlydividendswithex-dividenddatesduringlifeofoptionshouldbeincluded.The“dividend”shouldbetheexpectedreductioninthestockpriceexpected.AmericanCallsAnAmericancallonanon-dividend-payingstockshouldneverbeexercisedearly.AnAmericancallonadividend-payingstockshouldonlyeverbeexercisedimmediatelypriortoanex-dividenddate.SupposedividenddatesareattimesEarlyexerciseissometimesoptimalattimeifthedividendatthattimeisgreaterthanBlack’sApproximationforDealingWithDividendsinAmericanCallOptionsSettheAmericanpriceequalto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年在线教育平台课程买卖合同范本知识产权保护3篇
- 克孜勒苏职业技术学院《珠宝首饰手绘技法》2023-2024学年第一学期期末试卷
- 2024年度冷链物流司机劳务雇佣协议样本3篇
- 2024年土地承包经营权流转及项目管理合同3篇
- 喀什理工职业技术学院《化工原理下》2023-2024学年第一学期期末试卷
- 喀什大学《农业螨类学》2023-2024学年第一学期期末试卷
- 2024全新汽车维修企业员工安全生产责任合同3篇
- 2024商铺突发事件应急管理与物业管理合同3篇
- 五年级数学(小数除法)计算题专项练习及答案汇编
- 2025购房合同协议
- 测试标准(ISTA-3A中文版)
- 生命体征的观察与照护课件
- 养老机构实习生管理规范
- 国家开放大学电大《药理学》机考终结性3套真题题库及答案7
- DB32-T 2695-2014地理标志产品 金坛雀舌茶-(高清现行)
- 重庆市长寿区乡镇地图矢量可编辑PPT行政区划边界高清(重庆市)
- 火法高冰镍VS湿法镍成本分析
- 电炉炼钢工艺设备
- 2015-2016生物药物分离纯化技术实验指导
- 拆迁房屋安置结算单
- 工程结算表单模板
评论
0/150
提交评论