江苏省句容市华阳中学2024届数学九年级第一学期期末考试试题含解析_第1页
江苏省句容市华阳中学2024届数学九年级第一学期期末考试试题含解析_第2页
江苏省句容市华阳中学2024届数学九年级第一学期期末考试试题含解析_第3页
江苏省句容市华阳中学2024届数学九年级第一学期期末考试试题含解析_第4页
江苏省句容市华阳中学2024届数学九年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省句容市华阳中学2024届数学九年级第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列说法正确的是()A.打开电视机,正在播放广告是必然事件B.天气预报明天下雨的概率为%,说明明天一定会下雨C.买一张体育彩票会中奖是可能事件D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是随机事件2.一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种3.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=4,AB=6,BC=12,则DE等于()A.4 B.6 C.8 D.104.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线()A. B. C. D.5.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A.平均数 B.中位数 C.方差 D.众数6.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=7.如图,点D在以AC为直径的⊙O上,如果∠BDC=20°,那么∠ACB的度数为()A.20° B.40° C.60° D.70°8.下列说法中,正确的个数()①位似图形都相似:②两个等边三角形一定是位似图形;③两个相似多边形的面积比为5:1.则周长的比为5:1;④两个大小不相等的圆一定是位似图形.A.1个 B.2个 C.3个 D.4个9.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长10.sin65°与cos26°之间的关系为()A.sin65°<cos26° B.sin65°>cos26°C.sin65°=cos26° D.sin65°+cos26°=111.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)12.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有()A.400名 B.450名 C.475名 D.500名二、填空题(每题4分,共24分)13.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.14.已知方程x2﹣3x﹣5=0的两根为x1,x2,则x12+x22=_________.15.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.16.已知a=3+2,b=3-2,则a2b+ab2=_________.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.18.计算:=______.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP=2,CD=8,求⊙O的半径.20.(8分)某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图2,当时,,求支撑臂的长;(2)如图3,当时,求的长.(结果保留根号)(参考数据:,,,)21.(8分)用配方法解方程:﹣3x2+2x+1=1.22.(10分)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36º的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.(1)如图2,请用两种不同的方法画出顶角为45º的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种).(2)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.23.(10分)解方程:(1)x(2x﹣1)+2x﹣1=0(2)3x2﹣6x﹣2=024.(10分)在一个不透明的袋子里,装有3个分别标有数字﹣1,1,2的乒乓球,他们的形状、大小、质地等完全相同,随机取出1个乒乓球.(1)写出取一次取到负数的概率;(2)小明随机取出1个乒乓球,记下数字后放回袋子里,摇匀后再随机取出1个乒兵球,记下数字.用画树状图或列表的方法求“第一次得到的数与第二次得到的数的积为正数”发生的概率.25.(12分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.26.先化简,再从0、2、4、﹣1中选一个你喜欢的数作为x的值代入求值.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据必然事件,随机事件发生的可能性逐一判断即可.【题目详解】A.打开电视机,正在播放广告是随机事件,故错误;B.天气预报明天下雨的概率为%,明天也不一定会下雨,故错误;C.买一张体育彩票会中奖是可能事件,故正确;D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是必然事件,故错误;故选:C.【题目点拨】本题主要考查随机事件和必然事件,掌握随机事件和必然事件发生的可能性是解题的关键.2、B【解题分析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【题目详解】∵两根铝材的长分别为27cm、45cm,若45cm为一边时,则另两边的和为27cm,27<45,不能构成三角形,∴必须以27cm为一边,45cm的铝材为另外两边,设另外两边长分别为x、y,则(1)若27cm与24cm相对应时,,解得:x=33.75cm,y=40.5cm,x+y=33.75+40.5=74.25cm>45cm,故不成立;(2)若27cm与36cm相对应时,,解得:x=22.5cm,y=18cm,x+y=22.5+18=40.5cm<45cm,成立;(3)若27cm与30cm相对应时,,解得:x=32.4cm,y=21.6cm,x+y=32.4+21.6=54cm>45cm,故不成立;故只有一种截法.故选B.3、C【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质可得出,再代入AD=4,AB=6,BC=12即可求出DE的长.【题目详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴DE=1.故选:C.【题目点拨】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.4、B【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【题目详解】∵方程x2+bx+c=0的两个根分别为x1=-1,x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(-1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x.故选:B.【题目点拨】本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解答本题的关键.5、D【分析】根据题意,应该关注哪种尺码销量最多.【题目详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【题目点拨】本题考查了数据的选择,根据题意分析,即可完成。属于基础题.6、B【解题分析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式7、D【分析】由AC为⊙O的直径,可得∠ABC=90°,根据圆周角定理即可求得答案.【题目详解】∵AC为⊙O的直径,∴∠ABC=90°,∵∠BAC=∠BDC=20°,∴.故选:D.【题目点拨】本题考查了圆周角定理,正确理解直径所对的圆周角是直角,同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.8、B【分析】根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)分别对①②④进行判断,根据相似多边形的面积比等于相似比的平方,周长比等于相似比对③进行判断.【题目详解】解:①位似图形都相似,故该选项正确;②两个等边三角形不一定是位似图形,故该选项错误;③两个相似多边形的面积比为5:1.则周长的比为,故该选项错误;④两个大小不相等的圆一定是位似图形,故该选项正确.正确的是①和④,有两个,故选:B【题目点拨】本题考查的是位似图形、相似多边形性质,掌握位似图形的定义、相似多边形的性质定理是解决此题的关键.9、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【题目详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【题目点拨】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.10、B【分析】首先要将它们转换为同一种锐角三角函数,再根据函数的增减性进行分析.【题目详解】∵cos26°=sin64°,正弦值随着角的增大而增大,∴sin65°>cos26°.故选:B.【题目点拨】掌握正余弦的转换方法,了解锐角三角函数的增减性是解答本题的关键.11、C【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【题目详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【题目点拨】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.12、B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【题目详解】∵抽取200名考生的数学成绩,其中有60名考生达到优秀,∴该校考生的优秀率是:×100%=30%,∴该校达到优秀的考生约有:1500×30%=450(名);故选B.【题目点拨】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想.二、填空题(每题4分,共24分)13、1【解题分析】设参加聚会的有x名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送10份小礼品”,列出关于x的一元二次方程,解之即可.【题目详解】解:设参加聚会的有x名学生,根据题意得:,解得:,舍去,即参加聚会的有1名同学,故答案为:1.【题目点拨】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.14、1.【解题分析】试题解析:∵方程的两根为故答案为1.点睛:一元二次方程的两个根分别为15、4π【解题分析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【题目点拨】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.16、6【解题分析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a=3+2,b=3-2,代入运算即可.【题目详解】解:待求式提取公因式,得将已知代入,得故答案为6.【题目点拨】考查代数式求值,熟练掌握提取公因式法是解题的关键.17、15π【解题分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【题目详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=,∴S侧=×2πr×5=×2π×3×5=15π,故答案为15π.【题目点拨】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18、-1.【分析】由题意根据负整数指数幂和零指数幂的定义求解即可.【题目详解】解:=1﹣2=﹣1.故答案为:﹣1.【题目点拨】本题考查负整数指数幂和零指数幂的定义,熟练掌握实数的运算法则以及负整数指数幂和零指数幂的运算方法是解题的关键.三、解答题(共78分)19、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.【分析】(1)过P点作AB的垂线即可,作图依据是垂径定理的推论.(2)设⊙O的半径为r,在Rt△OPD中,利用勾股定理构建方程即可解决问题.【题目详解】(1)过P点作AB的垂线交圆与C、D两点,CD就是所求的弦,如图.依据:平分弦(非直径)的直径垂直于弦;(2)如图,连接OD,∵OA⊥CD于点P,AB是⊙O的直径,∴∠OPD=90°,PD=CD,∵CD=8,∴PD=2.设⊙O的半径为r,则OD=r,OP=OA﹣AP=r﹣2,在Rt△ODP中,∠OPD=90°,∴OD2=OP2+PD2,即r2=(r﹣2)2+22,解得r=1,即⊙O的半径为1.【题目点拨】本题主要考查了垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.20、(1)12cm;(2)12+6或12−6.【分析】(1)利用锐角三角函数关系得出,进而求出CD即可;(2)利用锐角三角函数关系得出,再由勾股定理求出DE、AE的值,即可求出AD的长度.【题目详解】解:(1)∵∠BAC=24°,,∴∴,∴支撑臂的长为12cm(2)如图,过点C作CE⊥AB,于点E,当∠BAC=12°时,∴∴∵CD=12,∴由勾股定理得:,∴AD的长为(12+6)cm或(12−6)cm【题目点拨】本题考查了解直角三角形的应用,熟练运用三角函数关系是解题关键.21、或【分析】本题首先将常数项移项,将二次项系数化为1,继而方程两边同时加一次项系数一半的平方,最后配方求解.【题目详解】∵,∴,∴,∴,∴,∴或.【题目点拨】本题考查一元二次方程的配方法,核心步骤在于方程两边同时加一次项系数一半的平方,解答完毕可用公式法、直接开方法、因式分解法验证结果.22、(1)图见解析,;(2)三分线长分别是和【分析】(1)根据等腰三角形的判定定理容易画出图形;由等腰三角形的性质即可求出各个顶角的度数;(2)根据等腰三角形的判定定力容易画出图形,设,则,,则,得出对应边成比例,设,得出方程组,解方程即可得.【题目详解】解:(1)作图如图1、图2所示:在图1中,即三个等腰三角形的顶角分别为在图2中,,,即三个等腰三角形的顶角分别为(2)如图3所示,就是所求的三分线设,则,此时,设,∵,∴∵,∴,解方程组解得:,或(负值舍去),即三分线长分别是和【题目点拨】本题是相似形的综合性题目,考查了等腰三角形的判定和性质、等腰三角形的画图、相似三角形的判定和性质、解方程组等知识,本题考查学生学习的理解能力及动手创新能力,综合性较强,有一定难度.23、(1)x1=,x2=﹣1;(2)x1=,x2=【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;

(2)求出b2-4ac的值,再代入公式求出即可.【题目详解】(1)x(2x﹣1)+2x﹣1=0,(2x﹣1)(x+1)=0,2x﹣1=0,x+1=0,x1=,x2=﹣1;(2)3x2﹣6x﹣2=0,这里a=3,b=-6,c=-2b2﹣4ac=(﹣6)2﹣4×3×(﹣2)=60,x=,x1=,x2=.【题目点拨】本题考查了解一元二次方程的应用,能选择适当的方法解方程是解此题的关键.24、(1);(2)【分析】(1)由概率公式即可得出结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论