版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间几何证明A1ED1C1B1A1ED1C1B1DCBA求证:平面。2、已知中,面,,求证:面.3、正方体中,求证:(1);4、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;AA1AB1BC1CD1DGEF5、如图,在正方体中,、、分别是、、的中点.求证:平面∥平面.6、如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G. 从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.考点:线面平行的判定(利用平行四边形)9.证明:(1)取的中点,连结,∵是的中点,∴,∵平面,∴平面∴是在平面内的射影,取的中点,连结,∵∴,又,∴[来源:学§科§网] ∴,∴,由三垂线定理得 (2)∵,∴,∴,∵平面.∴,且,∴考点:三垂线定理10.证明:∵、分别是、的中点,∥又平面,平面∥平面∵四边形为平行四边形,∥又平面,平面∥平面,平面∥平面考点:线面平行的判定(利用三角形中位线)证明:(1)设,∵、分别是、的中点,∥又平面,平面,∥平面(2)∵平面,平面,又,,平面,平面,平面平面考点:线面平行的判定(利用三角形中位线),面面垂直的判定12.证明:在中,,∵平面,平面,又,平面(2)为与平面所成的角在,,在中,在中,,考点:线面垂直的判定,构造直角三角形13.证明:(1)为等边三角形且为的中点,又平面平面,平面(2)是等边三角形且为的中点,且,,平面,平面,(3)由,∥,又,∥,为二面角的平面角在中,,考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)14.证明:取AB的中点F,连结CF,DF.∵,∴.∵,∴.又,∴平面CDF.∵平面CDF,∴.又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚法律文件:标准合同范例版B版
- 2024育儿嫂住家服务合同特殊技能培训范本3篇
- 2024研学合同协议
- 2025年度新型环保材料铺设打地坪合同范本3篇
- 2024聘用退休人员劳务合同范本
- 2025年度专业打印机租赁合同包含打印耗材及维护4篇
- 2025年度智能家居系统安装与维护承包合同8篇
- 2025年度生物科技出借咨询与服务协议4篇
- 2024年高端装备制造与技术转让协议
- 2024版洗车服务单位协议2篇
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 电厂检修安全培训课件
- 殡葬改革课件
- 2024企业答谢晚宴会务合同3篇
- 双方个人协议书模板
- 车站安全管理研究报告
- 玛米亚RB67中文说明书
- 中华人民共和国文物保护法
- 沪教牛津版初中英语七年级下册全套单元测试题
- 因式分解法提公因式法公式法
评论
0/150
提交评论