2024届江苏苏州高新区数学九上期末考试试题含解析_第1页
2024届江苏苏州高新区数学九上期末考试试题含解析_第2页
2024届江苏苏州高新区数学九上期末考试试题含解析_第3页
2024届江苏苏州高新区数学九上期末考试试题含解析_第4页
2024届江苏苏州高新区数学九上期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏苏州高新区数学九上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是()A.2 B.4 C.-2 D.-42.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.3.已知关于x的一元二次方程x2-(2k+1)x+k+1=0,若x1+x2=3,则k的值是()A.0 B.1 C.﹣1 D.24.如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)5.抛物线与坐标轴的交点个数为()A.个 B.个或个 C.个 D.不确定6.某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是()A. B.C. D.7.二次函数的图象如右图所示,若,,则()A., B., C., D.,8.如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B.C.或 D.或9.抛物线y=﹣(x+2)2+5的顶点坐标是()A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)10.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=100x B.y=C.y=200x D.y=二、填空题(每小题3分,共24分)11.如图,正方形的边长为8,点在上,交于点.若,则长为__.12.等腰△ABC的腰长与底边长分别是方程x2﹣6x+8=0的两个根,则这个△ABC的周长是_____.13.在中,,点、分别在边、上,,(如图),沿直线翻折,翻折后的点落在内部的点,直线与边相交于点,如果,那么__________.14.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+x+,则该运动员此次掷铅球的成绩是_____m.15.已知反比例函数y=的图象在第一、三象限内,则k的值可以是__.(写出满足条件的一个k的值即可)16.一元二次方程的解是_________.17.已知实数a、b、c在数轴上的位置如图所示,化简=_____.18.圆锥的侧面展开图是一个_____形,设圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为_____.三、解答题(共66分)19.(10分)如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为1.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.20.(6分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价(元/件)的关系如下表:15202530550500450400设这种产品在这段时间内的销售利润为(元),解答下列问题:(1)如是的一次函数,求与的函数关系式;(2)求销售利润与销售单价之间的函数关系式;(3)求当为何值时,的值最大?最大是多少?21.(6分)关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.22.(8分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的总人数是人,“:了解但不使用”的人数是人,“:不了解”所占扇形统计图的圆心角度数为.(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.23.(8分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?24.(8分)矩形的长和宽分别是4cm,3cm,如果将长和宽都增加xcm,那么面积增加ycm2(1)求y与x之间的关系式.(2)求当边长增加多少时,面积增加8cm2.25.(10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.26.(10分)已知二次函数y=x2﹣4x+1.(1)在所给的平面直角坐标系中画出它的图象;(2)若三点A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,则y1,y2,y1的大小关系为.(1)把所画的图象如何平移,可以得到函数y=x2的图象?请写出一种平移方案.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】由题意得:,又,则k的值即可求出.【题目详解】设,

直线与双曲线交于A、B两点,

,

,,

,

,则.

又由于反比例函数位于一三象限,,故.

故选A.【题目点拨】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为,是经常考查的一个知识点.2、D【解题分析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.3、B【分析】利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【题目详解】解:设方程的两个根分别为x1,x2,

由x1+x2=2k+1=3,

解得:k=1,

故选B.【题目点拨】本题考查了一元二次方程的根与系数的关系,能把求k的值的问题转化为解方程得问题是关键.4、D【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【题目详解】∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D.【题目点拨】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.5、C【分析】根据题意,与y轴有一个交点,令y=0,利用根的判别式进行判断一元二次方程的根的情况,得到与x轴的交点个数,即可得到答案.【题目详解】解:抛物线与y轴肯定有一个交点;令y=0,则,∴==;∴抛物线与x轴有2个交点;∴抛物线与坐标轴的交点个数有3个;故选:C.【题目点拨】本题考查了二次函数与坐标轴的交点情况,以及一元二次方程根的判别式,解题的关键是掌握二次函数的性质,正确得到与坐标轴的交点.6、D【分析】根据题意,第二月获得利润万元,第三月获得利润万元,根据第一季度共获利145.6万元,即可得出关于的一元二次方程,此题得解.【题目详解】设二、三月份利润的月增长率为,则第二月获得利润万元,第三月获得利润万元,

依题意,得:.

故选:D.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法为:若变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.7、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【题目详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,

∴25a-20a+4c>0,即5a+4c>0,

∴M>0,

∵当x=1时,y=a+b+c>0,

∴N>0,

故选:A.【题目点拨】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.8、D【解题分析】显然当y1>y2时,正比例函数的图象在反比例函数图象的上方,结合图形可直接得出结论.【题目详解】∵正比例函数y1=k1x的图象与反比例函数的图象交于A(-1,-2),B(1,2)点,

∴当y1>y2时,自变量x的取值范围是-1<x<0或x>1.

故选:D.【题目点拨】本题考查了反比例函数与一次函数的交点问题,数形结合的思想是解题的关键.9、B【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐.【题目详解】∵抛物线y=﹣(x+2)2+5,∴该抛物线的顶点坐标为(﹣2,5).故选:B.【题目点拨】本题考查了二次函数的性质,解答本题的关键是明确题意,由函数的顶点式可以直接写出顶点坐标.10、A【解题分析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k【题目详解】由题意,设y=kx由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=100x故眼镜度数y与镜片焦距x之间的函数关系式为y=100x故选:A.【题目点拨】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.二、填空题(每小题3分,共24分)11、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【题目详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【题目点拨】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.12、11【题目详解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰长与底边长分别是方程的两个根,∴当底边长和腰长分别为2和4时,满足三角形三边关系,此时△ABC的周长为:2+4+4=11;当底边长和腰长分别为4和2时,由于2+2=4,不满足三角形三边关系,△ABC不存在.∴△ABC的周长=11.故答案是:1113、【分析】设,,可得,由折叠的性质可得,,根据相似三角形的性质可得,即,即可求的值.【题目详解】根据题意,标记下图∵,∴∵∴设,∴∵由折叠得到∴,∴,且∴∴∴∴∴∴故答案为.【题目点拨】本题考查了三角形的折叠问题,理解折叠后的等量关系,利用代数式求出的值即可.14、1【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【题目详解】解:在中,当y=0时,整理得:x2-8x-20=0,(x-1)(x+2)=0,解得x1=1,x2=-2(舍去),即该运动员此次掷铅球的成绩是1m.故答案为:1.【题目点拨】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.15、1【解题分析】在本题中已知“反比例函数的图像在第一、三象限内,”从而得到2-k>0,顺利求解k的值.【题目详解】反比例函数的图像在第一、三象限内可得,2-k>0解得:k<2不妨取k=1,可得已知反比例函数,即可满足的图像在第一、三象限内.【题目点拨】熟练掌握反比例函数的性质是本题的解题关键.16、x1=0,x2=4【分析】用因式分解法求解即可.【题目详解】∵,∴x(x-4)=0,∴x1=0,x2=4.故答案为x1=0,x2=4.【题目点拨】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17、﹣a+b【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【题目详解】解:由图可知:a<b<0<c,而且,

∴a+c<0,b+c<0,

∴,

故答案为:.【题目点拨】本题考查了二次根式的性质与化简,绝对值的性质,根据数轴判断出a、b、c的情况是解题的关键.18、扇10π【分析】圆锥的侧面展开图是一个扇形,利用圆锥的全面积=圆锥的侧面积+底面积即可得答案.【题目详解】圆锥的侧面展开图是一个扇形,圆锥的侧面积==π×2×3=6π,底面积为=4π,∴全面积为6π+4π=10π.故答案为:扇,10π【题目点拨】本题考查圆锥的侧面展开图及侧面积的计算,熟记圆锥侧面积公式是解题关键.三、解答题(共66分)19、(1)y=x2+2x﹣3;(2)存在,点P坐标为或;(3)点N的坐标为(﹣4,1)【分析】(1)分别令y=0,x=0,可表示出A、B、C的坐标,从而表示△ABC的面积,求出a的值继而即可得二次函数解析式;(2)如图①,当点P在x轴上方抛物线上时,平移BC所在的直线过点O交x轴上方抛物线于点P,则有BC∥OP,此时∠POB=∠CBO,联立抛物线得解析式和OP所在直线的解析式解方程组即可求解;当点P在x轴下方时,取BC的中点D,易知D点坐标为(,),连接OD并延长交x轴下方的抛物线于点P,由直角三角形斜边中线定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,联立抛物线的解析式和OP所在直线的解析式解方程组即可求解.(3)如图②,通过点M到x轴的距离可表示△ABM的面积,由S△ABM=S△BNM,可证明点A、点N到直线BM的距离相等,即AN∥BM,通过角的转化得到AM=BN,设点N的坐标,表示出BN的距离可求出点N.【题目详解】(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,当x=0,y=a∴点C坐标为(0,a),∵C(0,a)在x轴下方∴a<0∵点A位于点B的左侧,∴点A坐标为(a,0),点B坐标为(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面积为1,∴,∴a1=﹣3,a2=4(因为a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)设直线BC:y=kx﹣3,则0=k﹣3,∴k=3;①当点P在x轴上方时,直线OP的函数表达式为y=3x,则,∴,,∴点P坐标为;②当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则∴,,∴点P坐标为,综上可得,点P坐标为或;(3)如图,过点A作AE⊥BM于点E,过点N作NF⊥BM于点F,设AM与BN交于点G,延长MN与x轴交于点H;∵AB=4,点M到x轴的距离为d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四边形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三点的横坐标相同,且BH=MH,∵M是抛物线上一点,∴可设点M的坐标为(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴点N的横坐标为﹣4,可设直线AC:y=kx﹣3,则0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,当x=﹣4时,y=﹣(﹣4)﹣3=1,∴点N的坐标为(﹣4,1).【题目点拨】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.20、(1);(2);(3)当时,的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【题目详解】(1)设与的函数关系式为y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本为10元,故每件利润为(x-10)∴销售利润(3)=∵-10<0,∴当时,的值最大,最大值为9000元.【题目点拨】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.21、k=1,x=【分析】将x=﹣1代入原方程可求出k值的值,然后根据根与系数的关系即可求出另外一根.【题目详解】将x=﹣1代入(k+1)x2﹣3x﹣3k﹣2=0,∴k=1,∴该方程为2x2﹣3x﹣5=0,设另外一根为x,由根与系数的关系可知:﹣x=,∴x=.【题目点拨】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解题的关键.22、(1),,;(2)4500人;(3)【分析】(1)根据条形统计图和扇形统计图的信息,即可求解;(2)由小区总人数×使用过“共享单车”的百分比,即可得到答案;(3)根据题意,列出表格,再利用概率公式,即可求解.【题目详解】(1)50÷25%=200(人),200×(1-30%-25%-20%)=50(人),360°×30%=108°,答:这次被调查的总人数是200人,“:了解但不使用”的人数是50人,“:不了解”所占扇形统计图的圆心角度数为108°.故答案是:,,;(2)×(25%+20%)=(人),答:估计使用过“共享单车”的大约有人;(3)列表如下:小张小李黄色蓝色绿色黄色(黄色,黄色)(黄色,蓝色)(黄色,绿色)蓝色(蓝色,黄色)(蓝色,蓝色)(蓝色,绿色)绿色(绿色,黄色)(绿色,蓝色)(绿色,绿色)由列表可知:一共有种等可能的情况,两人骑同一种颜色有三种情况:(黄色,黄色),(蓝色,蓝色),(绿色,绿色).【题目点拨】本题主要考查扇形统计图和条形统计图以及简单事件的概率,列出表格,得到事件的等可能的情况数,是解题的关键.23、红土”百香果每千克25元,“黄金”百香果每千克30元【解题分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【题目详解】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【题目点拨】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.24、(1)y=(4+x)(3+x)-12=x2+7x;(2)边长增加1cm时,面积增加8cm2.【分析】(1)根据题意,借助于矩形面积,直接解答;(2)在(1)中,把y=8代入即可解答.【题目详解】解:(1)由题意可得:(4+x)(3+x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论