云南省红河州蒙自市2024届九年级数学第一学期期末考试试题含解析_第1页
云南省红河州蒙自市2024届九年级数学第一学期期末考试试题含解析_第2页
云南省红河州蒙自市2024届九年级数学第一学期期末考试试题含解析_第3页
云南省红河州蒙自市2024届九年级数学第一学期期末考试试题含解析_第4页
云南省红河州蒙自市2024届九年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省红河州蒙自市2024届九年级数学第一学期期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-12.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.3.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35° B.45° C.55° D.65°4.方程的解是()A. B. C. D.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.sin∠EBC=C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形7.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且8.用配方法解方程时,配方后所得的方程为()A. B. C. D.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点且CD=4,则OE等于()A.1 B.2 C.3 D.410.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)二、填空题(每小题3分,共24分)11.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.12.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.13.如图,是的直径,弦与弦长度相同,已知,则________.14.在Rt△ABC中,∠ACB=90°,若tanA=3,AB=,则BC=___15.如图,在中,,,点在边上,,.点是线段上一动点,当半径为的与的一边相切时,的长为____________.16.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.17.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.18.已知一组数据:4,4,,6,6的平均数是5,则这组数据的方差是______.三、解答题(共66分)19.(10分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1220.(6分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.(1)求证:;(2)记,,求关于的函数表达式;(3)若,求图中阴影部分的面积.21.(6分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,抛物线的对称轴x=1,与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的解析式及A、B点的坐标.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形;若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大;求出此时P点的坐标和四边形ABPC的最大面积.22.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.23.(8分)已知关于的一元二次方程.(1)若方程有实数根,求实数的取值范围;(2)若方程的两个实根为,且满足,求实数的值.24.(8分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.25.(10分)如图,下列网格由小正方形组成,点都在正方形网格的格点上.(1)在图1中画出一个以线段为边,且与面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段为边,且与相似(但不全等)的格点三角形,并写出所画三角形与的相似比.(相同的相似比算一种)(1)(2)26.(10分)如图,在某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度(精确到0.1米).

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.2、C【解题分析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.3、C【解题分析】试题分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由直角三角形两锐角互余的关系即可求得∠B的度数:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.考点:1.圆周角定理;2.直角三角形两锐角的关系.4、B【解题分析】按照系数化1、开平方的步骤求解即可.【题目详解】系数化1,得开平方,得故答案为B.【题目点拨】此题主要考查一元二次方程的求解,熟练掌握,即可解题.5、C【题目详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【题目点拨】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.6、D【分析】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,然后结合三角函数、三角形的面积等逐一进行判断即可得.【题目详解】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正确,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正确,当10≤t≤12时,点P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=•t•(20﹣t)•=﹣t2+6t,故C正确,如图,当t=12时,Q点与C点重合,点P在BE上,此时BP=20-12=8,过点P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D错误,故选D.【题目点拨】本题考查动点问题的函数图象,涉及了矩形的性质,勾股定理,三角形函数,等腰三角形的判定等知识,综合性较强,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.7、B【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【题目详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【题目点拨】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.8、D【解题分析】根据配方的正确结果作出判断:.故选D.9、B【分析】利用菱形的性质以及直角三角形斜边上的中线等于斜边的一半进而得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=CD=4,AC⊥BD,又∵点E是边AB的中点,∴OE=AB=1.故选:B.【题目点拨】此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半,得出OE=AB是解题关键.10、C【解题分析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.二、填空题(每小题3分,共24分)11、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【题目详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【题目点拨】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.12、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【题目详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,

∴点G是△ABC的重心,D是BC的中点,

∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【题目点拨】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.13、【分析】连接BD交OC与E,得出,从而得出;再根据弦与弦长度相同得出,即可得出的度数.【题目详解】连接BD交OC与E是的直径弦与弦长度相同故答案为.【题目点拨】本题考查了圆周角定理,辅助线得出是解题的关键.14、1【分析】由tanA==1可设BC=1x,则AC=x,依据勾股定理列方程求解可得.【题目详解】∵在Rt△ABC中,tanA==1,∴设BC=1x,则AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(负值舍去),则BC=1,故答案为:1.【题目点拨】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.15、或或【分析】根据勾股定理得到AB、AD的值,再分3种情况根据相似三角形性质来求AP的值.【题目详解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB²=AC²+BC²AB=①当⊙P与BC相切时,设切点为E,连结PE,则PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②当⊙P与AC相切时,设切点为F,连结PF,则PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③当⊙P与BC相切时,设切点为G,连结PG,则PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案为:或或5【题目点拨】本题考查了利用相似三角形的性质对应边成比例来证明三角形边的长.注意分清对应边,不要错位.16、相离【解题分析】r=2,d=3,则直线l与⊙O的位置关系是相离17、.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【题目详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:.故答案为:.【题目点拨】本题考查了概率统计的问题,根据概率公式求解即可.18、0.8【分析】根据平均数是5,求m值,再根据方差公式计算,方差公式为:(表示样本的平均数,n表示样本数据的个数,S2表示方差.)【题目详解】解:∵4,4,,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,,6,6,∴,即这组数据的方差是0.8.故答案为:0.8.【题目点拨】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.三、解答题(共66分)19、(1)x=7或x=﹣1(2)x=﹣5或x=3【分析】(1)方程两边同时加16,根据完全平方公式求解方程即可.(2)开括号,再移项合并同类项,根据十字相乘法求解方程即可.【题目详解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化为:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【题目点拨】本题考查了解一元二次方程的问题,掌握解一元二次方程的方法是解题的关键.20、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角等于90°,可得∠CAB+∠ABC=90°,根据DO⊥AB,得出∠D+∠DAO=90°,进而可得出结果;(2)先证明,得出,从而可得出结果;(3)设OD与圆弧的交点为F,则根据S阴影=S△AOD-S△AOC-S扇形COF求解.【题目详解】(1)证明:∵是直径,∴,∴.∵,∴.∴.(2)解:∵,∴.∴.而,∴,∴即,∴.(3)解:设OD与圆弧的交点为F,设,则,∵,∴.在中,,∴.∴∠AOC=60°,∴DO=AO=3.又AO=CO,∴△ACO为等边三角形,S阴影=S△AOD-S扇形COF-S△AOC=.【题目点拨】本题主要考查圆周角定理的推论、圆中不规则图形面积的求法、等腰三角形的性质、等边三角形的性质与判定等知识,掌握基本性质与判定方法是解题的关键.注意求不规则图形的面积时,结合割补法求解.21、(1)y=x2﹣2x﹣3,点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,点P(1+,﹣);(3)故S有最大值为,此时点P(,﹣).【分析】(1)根据题意得到函数的对称轴为:x=﹣=1,解出b=﹣2,即可求解;(2)四边形POP′C为菱形,则yP=﹣OC=﹣,即可求解;(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),再根据ABPC的面积S=S△ABC+S△BCP即可求解.【题目详解】(1)函数的对称轴为:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再将点C(0,﹣3)代入得到c=-3,,∴抛物线的表达式为:y=x2﹣2x﹣3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,理由:如图1,四边形POP′C为菱形,则yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去负值),故点P(1+,﹣);(3)过点P作PH∥y轴交BC于点P,由点B、C的坐标得到直线BC的表达式为:y=x﹣3,设点P(x,x2﹣2x﹣3),则点H(x,x﹣3),ABPC的面积S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴当x=时,S有最大值为,此时点P(,﹣).【题目点拨】此题是一道二次函数的综合题,考查待定系数法求函数解析式,图象与坐标轴的交点,翻折的性质,菱形的性质,利用函数解析式确定最大值,(3)是此题的难点,利用分割法求四边形的面积是解题的关键.22、(1)k=10,b=3;(2).【解题分析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=×3×5=7.5考点:一次函数与反比例函数的综合问题.23、(1);(2).【分析】(1)根据一元二次方程的根的判别式即可得;(2)先根据一元二次方程的根与系数的关系可得,从而可得求出,再代入方程即可得.【题目详解】(1)∵原方程有实数根,∴方程的根的判别式,解得;(2)由一元二次方程的根与系数的关系得:,又,,将代入原方程得:,解得.【题目点拨】本题考查了一元二次方程的根的判别式、以及根与系数的关系,较难的是题(2),熟练掌握根与系数的关系是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论