版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古鄂尔多斯市康巴什新区数学九上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,某数学兴趣小组将长为,宽为的矩形铁丝框变形为以为圆心,为半径的扇形(忽略铁丝的粗细),则所得扇形的面积为()A. B. C. D.2.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.3.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°4.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米5.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6 B.8 C.10 D.126.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小7.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.40m B.80m C.120m D.160m8.二次函数的图象如右图所示,那么一次函数的图象大致是()A. B.C. D.9.如图,在矩形中,于F,则线段的长是()A. B. C. D.10.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米二、填空题(每小题3分,共24分)11.形状与抛物线相同,对称轴是直线,且过点的抛物线的解析式是________.12.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.13.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.14.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.15.将一元二次方程用配方法化成的形式为________________.16.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________17.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.18.二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1、A、A、…、A在y轴的正半轴上,点B、B、B、…、B在二次函数y=x2位于第一象限的图象上,若△A0B1A1、△A1B2A2、△A2B3A3、…、△A2017B2018A2018都为等边三角形,则△ABA的边长=____________.三、解答题(共66分)19.(10分)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在△ABC中,AB>AC,点D,E分别在AB,AC上,设CD,BE相交于点O,如果∠A是锐角,∠DCB=∠EBC=∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.20.(6分)如图,四边形是平行四边形,连接对角线,过点作与的延长线交于点,连接交于.(1)求证:;(2)连结,若,且,求证:四边形是正方形.21.(6分)如图,AB是⊙O的直径,弦EF⊥AB于点C,点D是AB延长线上一点,∠A=30°,∠D=30°.(1)求证:FD是⊙O的切线;(2)取BE的中点M,连接MF,若⊙O的半径为2,求MF的长.22.(8分)图中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.线段和的端点均在格点上.(1)在图中画出以为一边的,点在格点上,使的面积为4,且的一个角的正切值是;(2)在图中画出以为顶角的等腰(非直角三角形),点在格点上.请你直接写出的面积.23.(8分)已知在矩形中,,.是对角线上的一个动点(点不与点,重合),过点作,交射线于点.联结,画,交于点.设,.(1)当点,,在一条直线上时,求的面积;(2)如图1所示,当点在边上时,求关于的函数解析式,并写出函数定义域;(3)联结,若,请直接写出的长.24.(8分)如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E是弧BC的中点.(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是⊙O的切线.(2)点F是弧AC的中点,求EF的长.25.(10分)解方程(1)x2﹣4x+2=0(2)(x﹣3)2=2x﹣626.(10分)函数与函数(、为不等于零的常数)的图像有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:计算即可.【题目详解】解:∵矩形的长为6,宽为3,
∴AB=CD=6,AD=BC=3,
∴弧BD的长=18-12=6,故选:B.【题目点拨】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式2、D【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【题目详解】A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D.【题目点拨】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.3、B【解题分析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.4、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【题目详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【题目点拨】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.5、B【分析】根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.【题目详解】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC=,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=1.故选:B.【题目点拨】此题考查的是抛物线和正方形的对称性的应用、求二次函数上点的坐标和矩形的面积,掌握抛物线和正方形的对称性、求二次函数上点的坐标和矩形的面积公式是解决此题的关键.6、D【解题分析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;
B选项:反比例函数的图象关于原点中心对称,故本选项错误;
C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;
D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.
故选B.7、D【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【题目详解】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=m.故选D.【题目点拨】本题考查解直角三角形的应用-仰角俯角问题.8、D【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【题目详解】解:由二次函数图象,得出a>0,,b<0,
A、由一次函数图象,得a<0,b>0,故A错误;
B、由一次函数图象,得a>0,b>0,故B错误;
C、由一次函数图象,得a<0,b<0,故C错误;
D、由一次函数图象,得a>0,b<0,故D正确.
故选:D.【题目点拨】本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9、C【分析】根据矩形的性质和勾股定理求出,再由面积法求出的长即可.【题目详解】解:四边形是矩形,,,,的面积,;故选:.【题目点拨】本题考查了矩形的性质、勾股定理、直角三角形的面积,熟练掌握矩形的性质,熟记直角三角形的面积求法是解题的关键.10、A【分析】试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【题目详解】请在此输入详解!二、填空题(每小题3分,共24分)11、或.【分析】先从已知入手:由与抛物线形状相同则相同,且经过点,即把代入得,再根据对称轴为可求出,即可写出二次函数的解析式.【题目详解】解:设所求的二次函数的解析式为:,与抛物线形状相同,,,又∵图象过点,∴,∵对称轴是直线,∴,∴当时,,当时,,所求的二次函数的解析式为:或.【题目点拨】本题考查了利用待定系数法求二次函数的解析式和二次函数的系数和图象之间的关系.解答时注意抛物线形状相同时要分两种情况:①开口向下,②开口向上;即相等.12、2【解题分析】接把点P(a,b)代入反比例函数y=即可得出结论.【题目详解】∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2,故答案为:2.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13、90°【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.【题目详解】解:根据题意得:总人数是:12÷25%=48人,所以乘车部分所对应的圆心角的度数为360°×=90°;故答案为:90°.【题目点拨】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.14、60°或120°【解题分析】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【题目详解】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,则OC′⊥AB′,OC″⊥AB″,在Rt△OAC′中,∵OC′=1,OA=2,∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.15、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【题目详解】解:由方程,变形得:,配方得:,即;故答案为.【题目点拨】此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.16、秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【题目详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.,则AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)当△APQ∽△ACB时,,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案为t=或t=1.【题目点拨】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.17、1【解题分析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【题目详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【题目点拨】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.18、1【分析】分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=a,BB2=b,CB3=c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y=x2中,求a、b、c的值,得出规律.【题目详解】解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,
设A0A1=a,A1A2=b,A2A3=c,则AB1=a,BB2=b,CB3=c,在正△A0B1A1中,B1(a,),
代入y=x2中,得=×a2,解得a=1,即A0A1=1,
在正△A1B2A2中,B2(b,1+),
代入y=x2中,得1+=×b2,解得b=2,即A1A2=2,
在正△A2B3A3中,B3(c,3+),
代入y=x2中,得3+=×c2,解得c=3,即A2A3=3,
…
依此类推由此可得△A2017B1A1的边长=1,
故答案为:1.【题目点拨】本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.三、解答题(共66分)19、存在等对边四边形,是四边形DBCE,见解析【分析】作CG⊥BE于G点,作BF⊥CD交CD延长线于F点,证明△BCF≌△CBG,得到BF=CG,再证∠BDF=∠BEC,得到△BDF≌△CEG,故而BD=CE,即四边形DBCE是等对边四边形.【题目详解】解:此时存在等对边四边形,是四边形DBCE.如图,作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.∵∠DCB=∠EBC=∠A,BC为公共边,∴△BCF≌△CBG,∴BF=CG,∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,∴∠BDF=∠BEC,∴△BDF≌△CEG,∴BD=CE∴四边形DBCE是等对边四边形.【题目点拨】此题考查新定义形式下三角形全等的判定,由题意及图形分析得到等对边四边形是四边形DBCE,应证明线段BD=CE,只能作辅助线通过证明三角形全等得到结论,继而得解此题.20、(1)证明见解析,(2)证明见解析.【分析】(1)根据平行四边形的性质得:AD∥BC,AD=BC,又由平行四边形的判定得:四边形ACED是平行四边形,又由平行四边形的对边相等可得结论;(2)根据(1):四边形ACED是平行四边形,对角线互相平分可得:结合,从而证明AD=AB,即邻边相等,证明四边形为菱形,再证明从而∠ABC=90°,根据有一个角是直角的菱形是正方形可得结论.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∴BC=CE;(2)由(1)知:四边形ACED是平行四边形,∴DF=CF=AB,EF=AF,∵AD=2CF,∴AB=AD,四边形为平行四边形,四边形为菱形,∵AD∥EC,∴∴四边形ABCD是正方形.【题目点拨】此题考查了平行四边形的性质、正方形的判定、等腰三角形的判定与性质、平行线的性质,属于基础题,正确利用平行四边形的性质是解题关键.21、(1)见解析;(2)MF=.【分析】(1)如图,连接OE,OF,由垂径定理可知,根据圆周角定理可求出∠DOF=60°,根据三角形内角和定理可得∠OFD=90°,即可得FD为⊙O的切线;(2)如图,连接OM,由中位线的性质可得OM//AE,根据平行线的性质可得∠MOB=∠A=30°,根据垂径定理可得OM⊥BE,根据含30°角的直角三角形的性质可求出BE的长,利用勾股定理可求出OM的长,根据三角形内角和可得∠DOF=60°,即可求出∠MOF=90°,利用勾股定理求出MF的长即可.【题目详解】(1)如图,连接OE,OF,∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°,∴OF⊥FD.∴FD为⊙O的切线.(2)如图,连接OM,MF,∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴MB=OB=1,∴OM==,∵∠OFD=90°,∠D=30°,∴∠DOF=60°,∴∠MOF=∠DOF+∠MOB=90°,∴MF===.【题目点拨】本题考查切线的判定与性质、垂径定理、三角形中位线的性质及含30°角的直角三角形的性质,熟练掌握切线的性质是解题关键.22、(1)画图见解析;(2)画图见解析,1.【分析】(1)根据AB的长以及△ABE的面积可得出AB边上的高为2,再直接利用正切的定义借助网格得出E点位置,再画出△ABE即可;
(2)在网格中根据勾股定理可得出DC2=22+42,利用网格找出使CF2=DC2=22+42的点F即可,然后利用网格通过转化法可求出△CDF的面积.【题目详解】解:(1)设△ABE中AB边上的高为EG,则S△ABE=×AB×EG=4,又AB=4,∴EG=2,假设∠A的正切值为,即tanA=,∴AG=1,∴点E的位置如图所示,△ABE即为所求:
(2)根据勾股定理可得,DC2=22+42,∴CF2=DC2=22+42,所以点F的位置如图所示,△DCF即为所求;
根据网格可得,△DCF的面积=4×4-×2×4-×2×4-×2×2=1.【题目点拨】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.23、(1);(2);(3)或.【分析】(1)首先证明,由推出,求出,再利用即可求解;(2)首先证明,可得,再由,推出,即,可得,代入比例式即可解决问题;(3)若,分两种情况:当点P在线段BC上时和当点F在线段BC的延长线上时,分情况运用相似三角形的性质进行讨论即可.【题目详解】(1)四边形是矩形,,,,,在一条直线上,且,,,,,,,.(2),,,,,,又,,.,,,即,,,,.(3)①当点P在线段BC上时,如图设整理得解得②当点F在线段BC的延长线上时,作PH⊥AD于点H,连接DF由,可得解得或(舍去)综上所述,PD的长为或.【题目点拨】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质和分情况讨论是解题的关键.24、(1)见解析;(2)【分析】(1)连接AE,由等弦对等弧可得,进而推出,可知AE为⊙O的直径,再由等腰三角形三线合一得到AE⊥BC,根据DE∥BC即可得DE⊥AE,即可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版高校专利技术转让合同
- 2024-2030年中国大枣饮料行业销售模式及投资盈利预测报告
- 2024-2030年中国城市电视台行业发展策略及投资运作模式分析报告
- 2024年农业产业投资合同担保协议3篇
- 2024年校园水电设施改造与维护服务合同3篇
- 马鞍山师范高等专科学校《物联网应用概论》2023-2024学年第一学期期末试卷
- 2024年创新创业项目投资评估与咨询服务协议3篇
- 2024年度自动驾驶汽车劳动合同与聘用合同3篇
- 2024年标准化信息技术外包服务合同一
- 2024年度行政合同科技创新合同纠纷救济与保障协议2篇
- 机器学习(山东联盟)智慧树知到期末考试答案章节答案2024年山东财经大学
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 2024年江苏省普通高中学业水平测试小高考生物、地理、历史、政治试卷及答案(综合版)
- 沥青路面日常养护及维修施工要点(大量附图共143页)
- 《色彩基础知识》PPT课件(详解)
- 《保健按摩师》(二级)理论知识鉴定要素细目表
- 甘蔗制糖简介
- 三秦出版社五年级上册综合实践教案
- 屋顶分布式光伏项目安全文明施工控制措施
- 水泥保证供应实施方案及服务承诺书
- 2022机要密码工作总结机要室工作总结.doc
评论
0/150
提交评论