版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省华师附中实验学校九年级数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好2.用配方法解一元二次方程时,原方程可变形为()A. B. C. D.3.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.244.已知⊙O的半径为5cm,点P在⊙O上,则OP的长为()A.4cm B.5cm C.8cm D.10cm5.如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()A.3 B.4 C.6 D.96.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等7.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上8.若关于的一元二次方程有实数根,则的取值范围()A. B. C.且 D.且9.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π10.如图,在中,,,,则A. B. C. D.11.抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3) B.(1,3) C.(﹣1,3) D.(﹣1,﹣3)12.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根二、填空题(每题4分,共24分)13.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的半径为cm.14.已知,.且,设,则的取值范围是______.15.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.16.请写出“两个根分别是2,-2”的一个一元二次方程:_______________17.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.18.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.三、解答题(共78分)19.(8分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.20.(8分)已知正比例函数y=-3x与反比例函数y=交于点P(-1,n),求反比例函数的表达式21.(8分)如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F(1)求证:△ABE∽△DEF;(2)求EF的长.22.(10分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.23.(10分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.24.(10分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.25.(12分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.26.某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品脚玩具上x元(0<x<60)元,销售利润为w元,请求出w关于x的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.【题目详解】解:A、“清明时节雨纷纷”是随机事件,此选项错误;B、要了解路边行人边步行边低头看手机的情况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;2、B【解题分析】试题分析:,,.故选B.考点:解一元二次方程-配方法.3、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【题目详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【题目点拨】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.4、B【分析】根据点与圆的位置关系解决问题即可.【题目详解】解:∵点P在⊙O上,∴OP=r=5cm,故选:B.【题目点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5、D【分析】利用位似的性质得到AD:A′D′=OA:OA′=2:3,再利用相似多边形的性质得到得到四边形A′B′C′D′的面积.【题目详解】解:∵四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,∴AD:A′D′=OA:OA′=2:3,∴四边形ABCD的面积:四边形A′B′C′D′的面积=4:1,而四边形ABCD的面积等于4,∴四边形A′B′C′D′的面积为1.故选:D.【题目点拨】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.6、A【解题分析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.7、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【题目详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【题目点拨】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.8、D【分析】根据一元二次方程的定义和根的判别式得出且,求出即可.【题目详解】∵关于的一元二次方程有实数根,
∴且,
解得:1且,
故选:D.【题目点拨】本题考查了一元二次方程的定义和根的判别式,能得出关于的不等式是解此题的关键.9、A【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【题目详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为A.【题目点拨】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.10、A【解题分析】先利用勾股定理求出斜边AB,再求出sinB即可.【题目详解】∵在中,,,,∴,∴.故答案为A.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.11、D【解题分析】根据二次函数顶点式解析式写出顶点坐标即可.【题目详解】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.【题目点拨】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.12、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【题目详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【题目点拨】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.二、填空题(每题4分,共24分)13、1.【解题分析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,1πr=,解得:r=1cm.故答案是1.考点:圆锥的计算.14、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【题目详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【题目点拨】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键15、2016【解题分析】由题意可得,,,∵,为方程的个根,∴,,∴.16、【分析】可先分别写出解为2,-2的一元一次方程(此一元一次方程的等式右边为0),然后逆运用因式分解法即可.【题目详解】解:因为x+2=0的解为x=-2,x-2=0的解为x=2,所以的两个根分别是2,-2,可化为.故答案为:.【题目点拨】本题考查一元二次方程的解,因式分解法解一元二次方程.因式分解法是令等式的一边为0,另一边分解为两个一次因式乘积的形式,这两个一次因式为0时的解为一元二次方程的两个解.而本题可先分别写出两个值为0时解为2和-2的一次因式,这两个一次因式的乘积即可作为一元二次方程等式的一边,等式的另外一边为0.17、-1【分析】直接根据两根之和的公式可得答案.【题目详解】∵a、b是一元二次方程x2+x﹣1=0的两根,∴a+b=﹣1,故答案为:﹣1.【题目点拨】此题考查一元二次方程根与系数的公式,熟记公式并熟练解题是关键.18、.【解题分析】∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为:.三、解答题(共78分)19、(1)9;(2)6.【分析】(1)交叉相乘,化简后同除以y即可得出答案;(2)根据平行线的性质计算即可得出答案.【题目详解】解:(1)∴;(2)∵∴即:∴【题目点拨】本题考查的是解分式方程以及平行线的性质,比较简单,需要熟练掌握相关基础知识.20、.【分析】将点P的坐标代入正比例函数y=-3x中,即可求出n的值,然后将P点坐标代入反比例函数y=中,即可求出反比例函数的表达式.【题目详解】解:将点P的坐标代入正比例函数y=-3x中,得n=-3×(-1)=3,故P点坐标为(-1,3)将点P(-1,3)代入反比例函数y=中,得3=解得:m=2故反比例函数的解析式为:【题目点拨】此题考查的是求反比例函数的解析式,掌握用待定系数法求反比例函数的解析式是解决此题的关键.21、(1)证明见解析(2)【分析】(1)由四边形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,则可证得△ABE∽△DEF.(2)由(1)△ABE∽△DEF,根据相似三角形的对应边成比例,即可得,又由AB=6,AD=12,AE=8,利用勾股定理求得BE的长,由DE=AB-AE,求得DE的长,从而求得EF的长.【题目详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°.∵EF⊥BE,∴∠AEB+∠DEF=90°,∴∠DEF=∠ABE.∴△ABE∽△DEF.(2)解:∵△ABE∽△DEF,∴.∵AB=6,AD=12,AE=8,∴,DE=AD-AE=12-8=1.∴,解得:.22、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【题目详解】解:(1)2x2﹣7x+2=1,(x﹣2)(2x﹣1)=1,∴x﹣2=1或2x﹣1=1,∴x1=2,x2;(2)x2﹣2x=1,x(x﹣2)=1,x1=1或,x2=2.【题目点拨】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.23、(2)y=﹣x2﹣x+2;(2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.【解题分析】(2)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(2)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得,解得,∴抛物线的解析式为y=﹣x2﹣x+2.(2)由(2)知,该抛物线的解析式为y=﹣x2﹣x+2,则易得B(2,0),设M(m,n)然后依据S△AOM=2S△BOC列方程可得:•AO×|n|=2××OB×OC,∴×2×|﹣m2﹣m+2|=2,∴m2+m=0或m2+m﹣4=0,解得m=0或﹣2或,∴符合条件的点M的坐标为:(0,2)或(﹣2,2)或(,﹣2)或(,﹣2).(3)设直线AC的解析式为y=kx+b,将A(﹣2,0),C(0,2)代入得到,解得,∴直线AC的解析式为y=x+2,设N(x,x+2)(﹣2≤x≤0),则D(x,﹣x2﹣x+2),ND=(﹣x2﹣x+2)﹣(x+2)=﹣x2﹣2x=﹣(x+2)2+2,∵﹣2<0,∴x=﹣2时,ND有最大值2.∴ND的最大值为2.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.24、(1)补图见解析;(2)90,直径所对的圆周角是直角.【分析】(1)根据要求作出图形即可.
(2)根据线段的垂直平分线的性质以及圆周角定理证明即可.【题目详解】解:(1)如图线段CM即为所求.
证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版创新金融房地产商品房买卖合同书3篇
- 2024年度新型钢筋采购合同规范范本2篇
- 2024版乌依配偶双方婚内财产分割合同3篇
- 2024年度先进制造设备买卖合同(专业定制)2篇
- 2024版个人汽车贷款连带责任保证担保合同3篇
- 2024版导购员智能化设备操作聘用合同范本3篇
- 2024年新款货物买卖履约保证合同模板版B版
- 2024年度瓷砖产品展示与销售中心租赁合同3篇
- 2024年标准化土建工程施工承包合同版B版
- 2024年水利水电工程施工承包合同的履约管理具体规定
- 山东省济南市2023-2024学年高一上学期1月期末考试 物理 含答案
- 成人重症患者人工气道湿化护理专家共识 解读
- 机器学习(山东联盟)智慧树知到期末考试答案章节答案2024年山东财经大学
- 科研设计及研究生论文撰写智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 2024年辅警招聘考试试题库及完整答案(全优)
- 2024年江苏省普通高中学业水平测试小高考生物、地理、历史、政治试卷及答案(综合版)
- 三秦出版社五年级上册综合实践教案
- 屋顶分布式光伏项目安全文明施工控制措施
- 水泥保证供应实施方案及服务承诺书
- 2022机要密码工作总结机要室工作总结.doc
评论
0/150
提交评论