广东省湛江二中学港城中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
广东省湛江二中学港城中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
广东省湛江二中学港城中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
广东省湛江二中学港城中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
广东省湛江二中学港城中学2024届九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省湛江二中学港城中学2024届九年级数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,四边形ABCD是⊙O的内接四边形,点E在边CD的延长线上,若∠ABC=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°2.如果1是方程的一个根,则方程的另一个根是()A. B.2 C. D.13.下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上4.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内 B.P在圆上 C.P在圆外 D.无法确定5.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨6.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.7.⊙O的半径为6cm,点A到圆心O的距离为5cm,那么点A与⊙O的位置关系是(

)A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定8.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.169.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则的值为()A. B. C. D.10.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁11.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-212.如图,在中,,,,点在边上,且,点为边上的动点,将沿直线翻折,点落在点处,则点到边距离的最小值是()A.3.2 B.2 C.1.2 D.1二、填空题(每题4分,共24分)13.如图,,分别是边,上的点,,若,,,则______.14.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF︰GH=.15.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为______.16.已知关于x的方程有两个不相等的实数根,则的取值范__________.17.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.18.如图,在中,,为边上一点,已知,,,则____________.三、解答题(共78分)19.(8分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?20.(8分)已知直线与是的直径,于点.(1)如图①,当直线与相切于点时,若,求的大小;(2)如图②,当直线与相交于点时,若,求的大小.21.(8分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.22.(10分)如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,BC与y轴交于点E,且tan∠OAD=,y轴平分∠BAC,反比例函数y=(x>0)的图象经过点C.(1)求点B,D坐标;(2)求y=(x>0)的函数表达式.23.(10分)如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=1.(1)求BE的长.(2)若BC=15,求的长.24.(10分)若,且2a-b+3c=21.试求a∶b∶c.25.(12分)如图,为了估算河的宽度,在河对岸选定一个目标作为点A再在河的这边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.26.如图1,抛物线与轴交于,两点,过点的直线分别与轴及抛物线交于点(1)求直线和抛物线的表达式(2)动点从点出发,在轴上沿的方向以每秒1个单位长度的速度向左匀速运动,设运动时间为秒,当为何值时,为直角三角形?请直接写出所有满足条件的的值.(3)如图2,将直线沿轴向下平移4个单位后,与轴,轴分别交于,两点,在抛物线的对称轴上是否存在点,在直线上是否存在点,使的值最小?若存在,求出其最小值及点,的坐标,若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠ADE=180°,∴∠ADE=∠ABC=110°.故选D.点睛:本题是一道考查圆内接四边形性质的题,解题的关键是知道圆内接四边形的性质:“圆内接四边形对角互补”.2、A【分析】利用方程解的定义找到相等关系,将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出方程的另一根.【题目详解】设方程的另一根为.又解得:故选A.【题目点拨】本题考查根与系数的关系,解题突破口是将1代入两根之积公式和两根之和公式列出方程组.3、D【解题分析】试题分析:选项A,袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,本选项错误;选项B,天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,本选项错误;选项C,某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,也可能不中奖,本选项错误;选项D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,本选项正确.故答案选D.考点:概率的意义4、C【解题分析】点到圆心的距离大于半径,得到点在圆外.【题目详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【题目点拨】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.5、C【解题分析】试题分析:A.抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B.射击运动员射击一次,命中十环是随机事件,故B错误;C.在地球上,抛出的篮球会下落是必然事件,故C正确;D.明天会下雨是随机事件,故D错误;故选C.考点:随机事件.6、B【解题分析】列表得:

1

2

3

4

1

2+1=3

3+1=4

4+1=5

2

1+2=3

3+2=5

4+2=6

3

1+3=4

2+3=5

4+3=7

4

1+4=5

2+4=6

3+4=7

∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:.故选B.7、A【解题分析】∵⊙O的半径为6cm,点A到圆心O的距离为5cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故答案为:A.8、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【题目详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【题目点拨】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.9、B【解题分析】试题分析:∵DE∥BC,∴,∵,∴.故选B.考点:平行线分线段成比例.10、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【题目详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,

故选:A.

【题目点拨】本题考查了相似三角形的判定定理:

(1)两角对应相等的两个三角形相似.

(2)两边对应成比例且夹角相等的两个三角形相似.

(3)三边对应成比例的两个三角形相似.11、C【解题分析】∵反比例函数的图象经过点(2,-2),∴.故选C.12、C【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以1为半径的圆上,依据垂线段最短可知当FP⊥AB时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【题目详解】如图所示:当PE∥AB.在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,由翻折的性质可知:PF=FC=1,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即,解得:DF=2.1.∴PD=DF-FP=2.1-1=1.1.故选:C.【题目点拨】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题二、填空题(每题4分,共24分)13、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【题目详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【题目点拨】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.14、3:2.【题目详解】解:

过F作FM⊥AB于M,过H作HN⊥BC于N,

则∠4=∠5=90°=∠AMF

∵四边形ABCD是矩形,

∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,

∴四边形AMFD是矩形,

∴FM∥AD,FM=AD=BC=3,

同理HN=AB=2,HN∥AB,

∴∠2=∠2,

∵HG⊥EF,

∴∠HOE=90°,

∴∠2+∠GHN=90°,

∵∠3+∠GHN=90°,

∴∠2=∠3=∠2,

即∠2=∠3,∠4=∠5,

∴△FME∽△HNG,∴EF:GH=AD:CD=3:2.

故答案为:3:2.考点:2.相似三角形的判定与性质;2.矩形的性质.15、【分析】由题意设该厂缴税的年平均增长率为x,根据该厂前年及今年的纳税额,即可得出关于x的一元二次方程.【题目详解】解:如果该厂缴税的年平均增长率为,那么可以用表示今年的缴税数,今年的缴税数为,然后根据题意列出方程.故答案为:.【题目点拨】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16、且;【分析】根据一元二次方程的定义和根的判别式得出不等式组,求出不等式组的解集即可.【题目详解】∵关于x的方程(k-1)x1-x+1=0有两个不相等的实数根,∴k-1≠0且△=(-1)1-4(k-1)•1=-4k+9>0,即,解得:k<且k≠1,故答案为k<且k≠1.【题目点拨】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式组是解此题的关键.17、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【题目详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.【题目点拨】本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【题目详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【题目点拨】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.三、解答题(共78分)19、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较短的直角边为未知数x,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【题目详解】解:设一条直角边的长为xcm,则另一条直角边的长为(x+2)cm.根据题意列方程,得.解方程,得:x1=6,x2=(不合题意,舍去).∴一条直角边的长为6cm,则另一条直角边的长为8cm.【题目点拨】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.20、(1)30°;(2)18°【分析】(1)连接OC,根据已知条件得出,,根据平行线的性质得出,进而求得答案(2)连接EB,得出,从而得出,与为同弧所对的角,因此两角相等.【题目详解】解:(1)连接,是的切线,,,,,,,(2)连接,是的直径,,,,,,【题目点拨】本题是一道关于圆的综合性题目,考查到的知识点有圆的切线定理,平行线的性质,等边三角形的判定以及圆周角定理等,通过作辅助线综合分析是解题的关键.21、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【题目详解】解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,∴.将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,∴,∴;(2)由函数图象可得:x<﹣1或0<x<1.【题目点拨】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.22、(1)B(﹣1,0),D(1,0);(2)y=(x>0).【分析】(1)根据三角函数的定义得到OD=1,根据角平分线的定义得到∠BAO=∠DAO,根据全等三角形的性质即可得到结论;(2)过C作CH⊥x轴于H,得到∠CHD=90°,根据余角的性质得到∠DCH=∠CBH,根据三角函数的定义得到==,设DH=x,则CH=2x,BH=4x,列方程即可得到结论.【题目详解】解:(1)∵点A(0,﹣2),∴OA=2,∵tan∠OAD==,∴OD=1,∵y轴平分∠BAC,∴∠BAO=∠DAO,∵∠AOD=∠AOB=90°,AO=AO,∴△AOB≌△AOD(ASA),∴OB=OD=1,∴点B坐标为(﹣1,0),点D坐标为(1,0);(2)过C作CH⊥x轴于H,∴∠CHD=90°,∵∠ABC=90°,∴∠ABO+∠CBO=∠ABO+∠BAO=90°,∴∠BAO=∠DAO=∠CBD,∵∠ADO=∠CDH,∴∠DCH=∠DAO,∴∠DCH=∠CBH,∴tan∠CBH=tan∠DCH=,∴==,设DH=x,则CH=2x,BH=4x,∴2+x=4x,∴x=,∴OH=,CH=,∴C(,),∴k=×=,∴y=(x>0)的函数表达式为:(x>0).【题目点拨】本题考查了反比例函数综合题,涉及待定系数法求函数的解析式,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.23、(1)1﹣15;(2)15π【分析】(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的长,进而求得EB的长.(2)连接OD,则在直角三角形ODQ中,可求得∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,则得出的长度.【题目详解】解:(1)连接OE,过O作OF⊥BM于F,则四边形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)连接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π•60=15π.【题目点拨】本题考查了直角三角形的性质,弧长的计算、矩形的性质以及垂径定理,是基础知识要熟练掌握.24、4∶8∶7.【解题分析】试题分析:首先设等式为m,然后分别将a、b、c用含m的代数式来进行表示,根据2a-b+3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论