湖北省孝感市孝南区八校2024届九年级数学第一学期期末综合测试试题含解析_第1页
湖北省孝感市孝南区八校2024届九年级数学第一学期期末综合测试试题含解析_第2页
湖北省孝感市孝南区八校2024届九年级数学第一学期期末综合测试试题含解析_第3页
湖北省孝感市孝南区八校2024届九年级数学第一学期期末综合测试试题含解析_第4页
湖北省孝感市孝南区八校2024届九年级数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市孝南区八校2024届九年级数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若关于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>02.如图,在平面直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相切 C.相交 D.以上三种情况都有可能3.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A. B. C. D.4.函数和在同一坐标系中的图象大致是()A. B. C. D.5.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°6.在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB的长可以表示为(

)A.

B.

C.3sinα D.3cosα7.用配方法解一元二次方程,变形后的结果正确的是()A. B. C. D.8.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.249.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度与发球后球飞行的时间满足关系式,则该运动员发球后时,羽毛球飞行的高度为()A. B. C. D.10.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°二、填空题(每小题3分,共24分)11.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).12.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=_____.13.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率设每次降价的百分率为x,所列方程是______.14.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.15.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.16.如图,矩形的对角线经过坐标原点,矩形的边分别平行于坐标轴,点在反比例函数的图象上.若点的坐标为,则的值为_______.17.如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.18.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.三、解答题(共66分)19.(10分)某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.(1)求∠CAE的度数;(2)求AE的长(结果保留根号);(3)求建筑物AO的高度(精确到个位,参考数据:,).20.(6分)如图,直线y=﹣x+2与反比例函数y=的图象在第二象限内交于点A,过点A作AB⊥x轴于点B,OB=1.(1)求该反比例函数的表达式;(2)若点P是该反比例函数图象上一点,且△PAB的面积为3,求点P的坐标.21.(6分)在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.22.(8分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+623.(8分)直线与双曲线只有一个交点,且与轴、轴分别交于、两点,AD垂直平分,交轴于点.(1)求直线、双曲线的解析式;(2)过点作轴的垂线交双曲线于点,求的面积.24.(8分)在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.25.(10分)为测量观光塔高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,请根据以上观测数据求观光塔的高.26.(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据一元二次方程定义,首先要求的二次项系数不为零,再根据已知条件,方程有两个不相等的实数根,令根的判别式大于零即可.【题目详解】解:由题意得,解得,;且,即,解得.综上所述,且.【题目点拨】本题主要考查一元二次方程的定义和根的判别式,理解掌握定义,熟练运用根的判别式是解答关键.2、B【题目详解】解:如图,在中,令x=0,则y=-;令y=0,则x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,过点O作OD⊥AB,则OD=BD=AB=×2=1.又∵⊙O的半径为1,∴圆心到直线的距离等于半径.∴直线y=x-2与⊙O相切.故选B.3、A【解题分析】试题分析:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,设ED=k,则AE=2k,BC=3k,∴==,故选A.考点:1.相似三角形的判定与性质;2.平行四边形的性质.4、D【解题分析】试题分析:当k<0时,反比例函数过二、四象限,一次函数过一、二、四象限;当k>0时,反比例函数过一、三象限,一次函数过一、三、四象限.故选D.考点:1.反比例函数的图象;2.一次函数的图象.5、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【题目详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【题目点拨】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.6、A【解题分析】RtABC中,∠C=90°,∴cos=,∵,AC=,∴cosα=,∴AB=,故选A.【题目点拨】考查解直角三角形的知识;掌握和一个角的邻边与斜边有关的三角函数值是余弦值的知识是解决本题的关键.7、B【解题分析】根据配方法解一元二次方程即可求解.【题目详解】,∴,∴,故选:B.【题目点拨】本题考查了配方法解一元二次方程,解决本题的关键是方程两边同时加上一次项系数一半的平方.8、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【题目详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【题目点拨】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.9、C【分析】根据函数关系式,求出t=1时的h的值即可.【题目详解】t=1s时,h=-1+2+1.5=2.5故选C.【题目点拨】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.10、C【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【题目详解】解:∵AB与⊙O相切于点A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故选C.考点:切线的性质.二、填空题(每小题3分,共24分)11、不可能【分析】根据随机事件的概念进行判断即可.【题目详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【题目点拨】本题考查了随机事件的概念,掌握知识点是解题关键.12、【分析】根据锐角的正弦为对边比斜边,可得答案.【题目详解】解:在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=,故答案为:.【题目点拨】本题考查了求解三角函数,属于简单题,熟悉正弦三角函数的定义是解题关键.13、【分析】根据降价后的价格=降价前的价格×(1-降价的百分率),则第一次降价后的价格是560(1-x),第二次降价后的价格是560(1-x)2,据此列方程即可.【题目详解】解:设每次降价的百分率为x,由题意得:560(1-x)2=1,故答案为560(1-x)2=1.【题目点拨】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.14、1.1【解题分析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得FH=1.1里.故答案为1.1.15、或【解题分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【题目详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数=(>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:或,故答案为或【题目点拨】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.16、1或-3【分析】由题意根据反比例函数中值的几何意义即函数图像上一点分别作关于x、y轴的垂线与原点所围成的矩形的面积为,据此进行分析求解即可.【题目详解】解:由题意图形分成如下几部分,∵矩形的对角线为,∴,即,∵根据矩形性质可知,∴,∵,点的坐标为,∴,解得1或-3.故答案为:1或-3.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17、【分析】作轴于C,轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到,,再证明∽,然后利用相似三角形的性质得到的值,即可得出.【题目详解】解:作轴于C,轴于D,如图,点A、B分别在反比例函数,的图象上,,,,,,∽,,.故答案为.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.18、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【题目详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴,解得:x=2,故黑球的个数为2个.故答案为2.【题目点拨】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.三、解答题(共66分)19、(1)45°;(2);(3)29.【分析】(1)先根据测得顶点A的仰角为75°,求出∠AEC的度数进而求∠CAE的度数;(2)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(3)根据题干条件直接解直角三角形即可得到结论.【题目详解】解:(1)由测得顶点A的仰角为75°,可知∠AEC=180°-75°=105°,又顶点A的仰角为30°即∠ACE=30°,所以∠CAE=180°-105°-30°=45°;(2)延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=40,∴∠EAC=∠AEG-∠ACG=45°,∵EF=CE×Sin∠FCE=20,∴AE=,∴AE的长度为m;;(3)∵CF=CE×cos∠FCE=,AF=EF=20,∴AC=CF+AF=+20,∴AG=AC×Sin∠ACG=,∴AO=AG+GO=+1.5=≈29,∴高度AO约为29m.【题目点拨】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.20、(1);(2)(﹣3,1)或(1,﹣3).【分析】(1)先利用一次解析式确定A点坐标为(﹣1,3),然后把A点坐标代入y=中求出k得到反比例函数解析式;(2)设P(t,﹣),利用三角形面积公式得到×3×|﹣+1|=3,然后解方程求出t,从而得到P点坐标.【题目详解】(1)∵AB⊥x轴于点B,OB=1.∴A点的横坐标为﹣1,当x=﹣1时,y=﹣x+2=3,则A(﹣1,3),把A(﹣1,3)代入y=得k=﹣1×3=﹣3,∴反比例函数解析式为;(2)设P(t,﹣),∵△PAB的面积为3,∴×3×|﹣+1|=3,解得t=﹣3或t=1,∴P点坐标为(﹣3,1)或(1,﹣3).【题目点拨】此题考查待定系数法求函数解析式,一次函数与反比例函数的图象结合求几何图形的面积.21、(2)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为2;(3)点Q坐标为:(﹣2,2)或(﹣2+,2﹣)或(﹣2﹣,2+)或(2,﹣2).【分析】(2)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图2,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【题目详解】(2)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(2,0)三点代入,得,解得:,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣2,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=MD•OA=×2(m2﹣2m)=﹣m2﹣2m=﹣(m+2)2+2,∵﹣2<m<0,∴当m=﹣2时,S△MAB有最大值2,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为2.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x2=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x2=﹣2+,x2=﹣2﹣,∴Q(﹣2+,2﹣)或(﹣2﹣,2+),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,∴BQ=OP=2,点Q的横坐标为2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),综上所述,点Q的坐标为(﹣2,2)或(﹣2+,2﹣)或(﹣2﹣,2+)或(2,﹣2).【题目点拨】本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.22、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【题目详解】解:(1)x²+4x-5=0因式分解得,(x+5)(x-1)=0则,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移项得,x(2x+3)-2(2x+3)=0则,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.23、(1);;(2).【分析】(1)由题意利用待定系数法求一次函数以及反比例函数解析式即可;(2)根据题意求出BE和BD的值,运用三角形面积公式即可得解.【题目详解】解:(1)由已知得,,∴.将点、点坐标代入,得,解得,直线解析式为;将点坐标代入得,∴反比例函数的解析式为.(2)∵E和B同横轴坐标,∴当时,即,∵,,D(1,0)∴BD=1,即为以BE为底的高,∴.【题目点拨】本题考查反比例函数和几何图形的综合问题,熟练掌握待定系数法求反比例函数解析式以及运用数形结合思维分析是解题的关键.24、(1)袋中有黄球有2个(2)【解题分析】设袋中黄球有x个,根据任意摸出一个球是红球的概率为列出关于x的方程,解之可得;

列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【题目详解】设袋中黄球有x个,根据题意,得:,解得,经检验是原分式方程的解,,即袋中有黄球有2个;列表如下:红红红红黄黄红红,红红,红红,红红,红红,黄红,黄红红,红红,红红,红红

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论