北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件_第1页
北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件_第2页
北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件_第3页
北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件_第4页
北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一定是直角三角形吗第一章勾股定理导入新课讲授新课当堂练习课堂小结

情境引入学习目标1.了解直角三角形的判定条件.(重点)2.能够运用勾股数解决简单实际问题.(难点)导入新课

问题:同学们你们知道古埃及人用什么方法得到直角的吗?

用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第9个结,拉紧绳子就得到一个直角三角形,其直角在第1个结处.讲授新课勾股定理的逆定理一

探究:下面有三组数分别是一个三角形的三边长a,b,c:①5,12,13;②7,24,25;③8,15,17.回答下列问题:1.这三组数都满足a2+b2=c2吗?2.分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?实验结果:

①5,12,13满足a2+b2=c2,可以构成直角三角形;②7,24,25满足a2+b2=c2,可以构成直角三角形;③8,15,17满足a2+b2=c2,可以构成直角三角形.思考:从上述问题中,能发现什么结论吗?

如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

有同学认为测量结果可能有误差,不同意这个发现.你觉得这个发现正确吗?你能给出一个更有说服力的理由吗?△ABC≌△A′B′C′

∠C是直角△ABC是直角三角形A

B

C

abc已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.求证:△ABC是直角三角形.构造两直角边分别为a,b的Rt△A′B′C′证明结论简要说明:作一个直角∠MC1N,在C1M上截取C1B1=a=CB,在C1N上截取C1A1=b=CA,连接A1B1.在Rt△A1C1B1中,由勾股定理,得A1B12=a2+b2=AB2.∴A1B1=AB,∴△ABC≌△A1B1C1.(SSS)∴∠C=∠C1=90°,∴△ABC是直角三角形.acbACBbaC1MNB1A1勾股定理的逆定理归纳总结如果三角形的三边长a、b、c满足a2+b2=c2那么这个三角形是直角三角形.ACBabc

勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角,最长边所对角为直角.特别说明:典例精析例1:一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图2所示,这个零件符合要求吗?DABC4351312DABC图1图2在△BCD中,

所以△BCD

是直角三角形,∠DBC是直角.因此,这个零件符合要求.解:在△ABD中,

所以△ABD

是直角三角形,∠A是直角.例2下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a=15,b=8,c=17;

解:因为152+82=289,172=289,所以152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.(2)a=13,

b=14,c=15;

解:因为132+142=365,152=225,所以132+142≠152,不符合勾股定理的逆定理,所以这个三角形不是直角三角形.(3)a:b:c=3:4:5;解:设a=3k,b=4k,c=5k,因为(3k)2+(4k)2=25k2,(5k)2=25k2,所以(3k)2+(4k)2=(5k)2,根据勾股定理的逆定理,这个三角形是直角三角形,∠C是直角.

根据勾股定理及其逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳变式1:已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为大于1的正整数).试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由解:∵AB²+BC²=(n²-1)²+(2n)²=n4-2n²+1+4n²=n4+2n²+1=(n²+1)²=AC²,∴△ABC直角三角形,边AC所对的角是直角.先确定AB、BC、AC、的大小变式2:若三角形ABC的三边a,b,c

满足a2+b2+c2+50=6a+8b+10c.试判断△ABC的形状.解:∵a2+b2+c2+50=6a+8b+10c∴a2-6a+9+b2-8b+16+c2-10c+25=0.即(a-3)²+(b-4)²+(c-5)²=0.∴a=3,b=4,c=5即a2+b2+c2.∴△ABC直角三角形.例3在正方形ABCD中,F是CD的中点,E为BC上一点,且CE=CB,试判断AF与EF的位置关系,并说明理由.

解:AF⊥EF.设正方形的边长为4a,则EC=a,BE=3a,CF=DF=2a.在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2.在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.如果三角形的三边长a,b,c满足a2+b2=c

那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.勾股数二概念学习常见勾股数:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.勾股数拓展性质:

一组勾股数,都扩大相同倍数k,得到一组新数,这组数同样是勾股数.例4:下列各组数是勾股数的是()A.6,8,10B.7,8,9C.0.3,0.4,0.5D.52,122,132A方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.当堂练习1.如果线段a,b,c能组成直角三角形,则它们的比可以是()A.3:4:7B.5:12:13C.1:2:4D.1:3:5将直角三角形的三边长扩大同样的倍数,则得到的三角形()A.是直角三角形B.可能是锐角三角形C.可能是钝角三角形D.不可能是直角三角形BA4.如果三条线段a,b,c满足a2=c2-b2,这三条线段组成的三角形是直角三角形吗?为什么?解:是直角三角形.因为a2+b2=c2满足勾股定理的逆定理.3.以△ABC的三条边为边长向外作正方形,依次得到的面积是25,144,169,则这个三角形是______三角形.直角5.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流.412243解:△ABE,△DEF,△FCB均为直角三角形.

由勾股定理知

BE2=22+42=20,

EF2=22+12=5,

BF2=32+42=25,∴BE2+EF2=BF2,∴△BEF是直角三角形.6.如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD的面积.解:连接BD.在Rt△ABD中,由勾股定理,得BD2=AB2+AD2,∴BD=5m,又∵CD=12cm,BC=13cm∴BC2=CD2+BD2,∴△BDC是直角三角形.S四边形ABCD=SRt△BCD-SRt△ABD=BD•CD-

AB•AD=(5×12-3×4)=24m2.CBAD变式:如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30cm2,DC=12cm,AB=3cm,BC=4cm,求△ABC的面积.解:∵S△ACD=30cm2,DC=12cm.∴AC=5cm,又∵∴△ABC是直角三角形,∠B是直角.∴DCBA一定是直角三角形吗勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.课堂小结勾股数:满足a2+b2=c2的三个正整数见《学练优》本课时练习课后作业第五章二元一次方程组八年级数学北师版·上册5.3应用二元一次方程组—鸡兔同笼

新课引入古代算书《九章算术》卷七中有“盈不足”问题:今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何?

意思是说:有大小两种盛米的桶,已知5个大桶加1个小桶可以盛3斛米;1个大桶加上5个小桶可以盛2斛米,求1个大桶和1个小桶分别可以盛几斛米?新知探究今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?你能解决这个有趣的鸡兔同笼的难题吗?新知探究《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣,其中下卷第31题“雉兔同笼”流传尤为广泛,飘洋过海流传到了日本等国.新知探究(1)“上有三十五头”的意思是什么?“下有九十四足”呢?(2)你能根据(1)中的数量关系列出方程组吗?(3)你能解决这个有趣的问题吗?今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?从上面数共有35个头从下面数共有94只脚新知探究解:设笼中有鸡x只,则有兔(35-x)只,得2x+4(35-x)=94,2x+140-4x=94,-2x=-46,x=23,35-x=12.答:所以笼中有鸡23只,兔12只.1.用一元一次方程求解.优点是思维便捷.不足是计算较复杂.新知探究2.用二元一次方程组求解.解:设笼中有鸡x只,有兔y只,由题意可得x+y=35,2x+4y=94.解此方程组得x=23,y=12.答:笼中有鸡23只,兔12只.优点是思维快速简单,不足是计算复杂些新知探究(1)弄清题意和题目中的数量关系,设出题中的两个未知数;(2)找出表示应用题全部含义的两个相等关系;(3)根据找出的两个相等关系列出所需的方程,从而列出方程组;(4)解方程组;(5)检验所得的解是不是方程组的解,并且要检验其是否符合题意,否则要舍去;(6)写出答案,包括单位名称.二元一次方程组解决问题的步骤:新知探究问题一:(1)“将绳三折测之,绳多五尺”,什么意思?(2)“若将绳四折测之,绳多一尺”,又是什么意思?以绳测井若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?新知探究用绳子测水井的深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?题目大意是:问题二:找出等量关系并完成题目.新知探究等量关系解:设绳长x尺,井深y尺,根据题意,得①②解得x=48,y=11.答:所以绳长48尺,井深11尺.

新知探究列二元一次方程组解应用题的步骤是什么?(1)审:审清题意;(2)设:设出两个未知数;(3)找:弄清各个量之间的关系,找出等量关系;(4)列:根据题意列出二元一次方程组;(5)解:正确地求出二元一次方程组的解;(6)答:根据实际情况检验方程组的解后写出答案.新知探究

古有一捕快,一天晚上他在野外的一个茅屋里,听到外边来了一群人,在分赃,他隐隐约约地听到几个声音,下面有这一古诗为证:隔壁听到人分银,不知人数不知银.只知每人五两多六两,每人六两少五两,问你多少人数多少银?新知探究隔壁听到人分银,不知人数不知银.只知每人五两多六两,每人六两少五两,问你多少人数多少银?

新知探究列方程组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论