版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市平顶山中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线(为参数)上与点的距离等于的点的坐标是A. B.C.或 D.或参考答案:D【分析】直接利用两点间的距离公式求出t的值,再求出点的坐标.【详解】由,得,则,则所求点的坐标为或.故选:D【点睛】本题主要考查直线的参数方程和两点间的距离公式,意在考查学生对这些知识的理解掌握水平,属于基础题.2.已知角的终边经过点P(-3,4),则下列计算结论中正确的是
(
)A.
B.
C.
D.参考答案:A3.椭圆的左、右焦点分别为,弦AB过,若的内切圆周长为,A,B两点的坐标分别为和,则的值为(
)A.
B.
C.
D.
参考答案:D略4.如图,在棱长为的正方体中,为的中点,为上任意一
点,为上两点,且的长为定值,则下面四个值中不是定值的是(
)(A)点到平面的距离
(B)直线与平面所成的角(C)三棱锥的体积
(D)的面积参考答案:B考点:空间直线与平面的位置关系及几何体的体积面积的综合运用.【易错点晴】化归与转化的数学思想是高考所要考查的四大数学思想之一.本题以正方体这一简单几何体为背景,考查的是距离角度体积面积的定值问题的判定方法问题.求解时,首先要搞清楚面积是定值,其次是点到面的距离是个定值;这样就容易判定三棱锥的体积也是定值,从而选填答案B.5.数列的首项为,为等差数列且.若,则(
)A.0
B.3
C.8
D.11参考答案:B略6.设在内单调递增,,则是的()A.充分不必要条件
B.必要不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B7.若双曲线的离心率是,则实数(
). A. B. C. D.参考答案:A解:双曲线,,,∴,,∴.故选.8.设是空间不同的直线,是空间不同的平面①则//
;
②//,则//;③则//;
④则//.以上结论正确的是(
)①②
①④
③④
②③参考答案:A略9.是的(
)(A)充分而不必要条件
(B)必要而不充分条件(C)充分必要条件
(D)既不充分也不必要条件参考答案:A10.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a,b不能被5整除 D.a,b有1个不能被5整除参考答案:B【考点】R9:反证法与放缩法.【分析】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.二、填空题:本大题共7小题,每小题4分,共28分11.设平面内有n条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用表示这n条直线交点的个数,则=
;当n>4时,=
(用含n的数学表达式表示)。参考答案:5
;略12.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是
.参考答案:(x﹣1)2+(y﹣1)2=2
【考点】直线与圆的位置关系.【分析】设所求的圆的圆心为M,可得M、O、C共线,故圆心M在直线y=x上,设所求的圆的圆心为M(a,a),又所求的圆过点A(0,2),可得圆心M还在直线y=1上,故M(1,1),求得半径AM的值,可得要求的圆的方程.【解答】解:圆C:(x+3)2+(y+3)2=18的圆心C(﹣3,﹣3).根据两圆相切于原点,设所求的圆的圆心为M,可得M、O、C共线,故圆心M在直线y=x上,设所求的圆的圆心为M(a,a),又所求的圆过点A(0,2),故圆心M还在直线y=1上,故M(1,1),半径为AM=,故要求的圆的方程为:(x﹣1)2+(y﹣1)2=2,故答案为:(x﹣1)2+(y﹣1)2=2.【点评】此题考查了直线与圆相交的性质,涉及的知识有圆的标准方程,垂径定理,勾股定理,两圆相切的性质,属于中档题.13.不等式|x﹣1|≥5的解集是.参考答案:{x|x≥6或x≤﹣4}【考点】绝对值不等式的解法.【分析】问题转化为x﹣1≥5或x﹣1≤﹣5,求出不等式的解集即可.【解答】解:∵|x﹣1|≥5,∴x﹣1≥5或x﹣1≤﹣5,解得:x≥6或x≤﹣4,故答案为:{x|x≥6或x≤﹣4}.14.已知函数(Ⅰ)求不等式的解集;(Ⅱ)若关于的不等式的解集非空,求实数的取值范围.参考答案:略15.如果方程﹣=1表示双曲线,那么实数m的取值范围是
.参考答案:(﹣1,1)∪(2,+∞)
【考点】双曲线的标准方程.【分析】方程表示双曲线的充要条件是mn<0.【解答】解:∵方程﹣=1表示双曲线,∴(|m|﹣1)(m﹣2)>0,解得﹣1<m<1或m>2,∴实数m的取值范围是(﹣1,1)∪(2,+∞).故答案为:(﹣1,1)∪(2,+∞).【点评】本题考查双曲线的定义,是基础题,解题时要熟练掌握双曲线的简单性质.16.已知圆的方程为,若抛物线过点,B且以圆的切线为准线,则抛物线的焦点的轨迹方程为_____________.
参考答案:17.若实数满足:,则的最小值是
▲
.参考答案:8略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)如图,曲线是以原点为中心,为焦点的椭圆的一部分.曲线是以原点为顶点,为焦点的抛物线的一部分,,是曲线和的交点且为钝角,若,.(1)求曲线和的方程;(2)设点,是曲线所在抛物线上的两点(如图).设直线的斜率为,直线的斜率为,且,证明:直线过定点,并求该定点的坐标.
参考答案:解:(1)设,,,曲线所在椭圆的长轴长为,则………………2分又由已知及圆锥曲线的定义得:…………4分得:,又∵为钝角,∴,故……5分即曲线的方程为,曲线的方程为…7分(2)设直线的方程为:,
由得即,……9分同理得:……10分
∴直线的方程为:即,…………13分当时,恒有,即直线过定点…14分19.(本小题满分12分)设椭圆C:的左、右焦点分别为,,点满足
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若已知点,设直线与椭圆C相交于A,B两点,且,求椭圆C的方程。
参考答案:(Ⅰ)解:设,因为,即故……4分
(Ⅱ)解:由(Ⅰ)知,可得椭圆方程为,直线PF2的方程为……6分
A,B两点的坐标满足方程组消去并整理,得。解得,得方程组的解20.(本小题满分10分)如图,圆的圆心在的直角边上,该圆与直角边相切,与斜边交于,,。(Ⅰ)求的长; (Ⅱ)求圆的半径。参考答案:21.已知数列{an}满足,.(Ⅰ)证明:数列是等差数列;(Ⅱ)求数列{an}的前n项和Sn.参考答案:(Ⅰ)详见解析;(Ⅱ).【分析】(Ⅰ)利用定义得证.(Ⅱ)由(Ⅰ)知,利用分组求和法的到前项和.【详解】解:(Ⅰ)由,可得,即,又,∴,∴数列是首项为3,公差为2的等差数列.(Ⅱ)由(Ⅰ)知,,∴,∴.【点睛】本题考查了等差数列的证明,分组求和法求前项和,意在考查学生对于数列公式和方法的灵活运用.22.已知函数(e为自然对数的底数).(1)求函数的单调区间;(2)设函数,存在实数,,使得成立,求实数t的取值范围.参考答案:解:(1)∵函数的定义域为R,f′(x)=-,∴当x<0时,f′(x)>0,当x>0时,f′(x)<0,∴f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.
(2)存在x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,
则2[φ(x)]min<[φ(x)]max.∵φ(x)=xf(x)+tf′(x)+e-x=,∴.①当t≥1时,φ′(x)≤0,φ(x)在[0,1]上单调递减,∴2φ(1)<φ(0),即t>3->1;②当t≤0时,φ′(x)>0,φ(x)在[0,1]上单调递增,
∴2φ(0)<φ(1),即t<3-2e<0;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《新材料设计与应用》2021-2022学年第一学期期末试卷
- 吉林艺术学院《美术鉴赏》2021-2022学年第一学期期末试卷
- 吉林艺术学院《构图原理》2021-2022学年第一学期期末试卷
- 2024年公租房代理退租协议书模板
- 吉林师范大学《油画头像技法解析》2021-2022学年第一学期期末试卷
- 吉林师范大学《小组工作》2021-2022学年第一学期期末试卷
- 2022年公务员多省联考《申论》真题(陕西A卷)及答案解析
- 合拍三人合伙协议书范文范本
- 舞蹈培训班承包协议书范文范本
- 吉林师范大学《数字图像技术》2021-2022学年期末试卷
- 2024年10月时政100题(附答案)
- 学生校外托管协议书
- 建筑幕墙施工方案
- 第二章 地图(考点串讲课件)七年级地理上学期期中考点大串讲(人教版2024)
- 【9道期中】安徽省黄山地区2023-2024学年九年级上学期期中考试道德与法治试题(含详解)
- 2024年健身房管理制度(六篇)
- 期中测试卷(1-4单元)(试题)-2024-2025学年人教版数学六年级上册
- 车辆绿本抵押借款合同
- 意识形态分析研判制度
- GB/T 18029.6-2024轮椅车第6 部分:电动轮椅车最大速度的测定
- 2024至2030年中国学前教育(幼儿园)行业研究报告
评论
0/150
提交评论