版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州铜仁松桃县2024届数学九上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.122.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A. B. C. D.3.如图,将绕点,按逆时针方向旋转120°,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为()A.15° B.20° C.30° D.45°4.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB5.解方程,选择最适当的方法是()A.直接开平方法 B.配方法 C.公式法 D.因式分解法6.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.5﹣ D.8﹣27.如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①② B.③④ C.②③ D.①③8.如图,,是四边形的对角线,点,分别是,的中点,点,分别是,的中点,连接,,,,要使四边形为正方形,则需添加的条件是()A., B.,C., D.,9.把抛物线向右平移l个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A. B.C. D.10.下列交通标志中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若3a=4b(b≠0),则=_____.12.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为_____米.13.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).14.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.睡眠时间(小时)6789学生人数864215.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.16.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.17.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为_____(度).18.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.三、解答题(共66分)19.(10分)如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.20.(6分)综合与探究:如图,将抛物线向右平移个单位长度,再向下平移个单位长度后,得到的抛物线,平移后的抛物线与轴分别交于,两点,与轴交于点.抛物线的对称轴与抛物线交于点.(1)请你直接写出抛物线的解析式;(写出顶点式即可)(2)求出,,三点的坐标;(3)在轴上存在一点,使的值最小,求点的坐标.21.(6分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=4,AC=1.(1)求CD的长;(2)求证:△ABE∽△ACB.22.(8分)计算:(1)()(2)-14+23.(8分)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36º的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.(1)如图2,请用两种不同的方法画出顶角为45º的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种).(2)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.24.(8分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?25.(10分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.(1)该店销售该商品原来一天可获利润元.(2)设后来该商品每件售价降价元,此店一天可获利润元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.26.(10分)在同一平面内,将两个全等的等腰直角三角形和摆放在一起,为公共顶点,,若固定不动,绕点旋转,、与边的交点分别为、(点不与点重合,点不与点重合).(1)求证:;(2)在旋转过程中,试判断等式是否始终成立,若成立,请证明;若不成立,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【题目详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【题目点拨】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.2、C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【题目详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是;故选:C.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3、C【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【题目详解】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,
∴∠BAB′=∠CAC′=120°,AB=AB′,
∴∠AB′B=(180°-120°)=30°,
∵AC′∥BB′,
∴∠C′AB′=∠AB′B=30°,
∴∠CAB=∠C′AB′=30°,
故选:C.【题目点拨】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.4、C【解题分析】试题分析:∵∠A=∠A,∴当∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB时,△ABE和△ACD相似.故选C.考点:相似三角形的判定.5、D【解题分析】根据方程含有公因式,即可判定最适当的方法是因式分解法.【题目详解】由已知,得方程含有公因式,∴最适当的方法是因式分解法故选:D.【题目点拨】此题主要考查一元二次方程解法的选择,熟练掌握,即可解题.6、B【分析】如图所示,⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可.【题目详解】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N为,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滚过的路程为2.故选:B.【题目点拨】本题考查了切线的性质,平行四边形的性质及解直角三角形等知识.关键是计算出AE和BN的长度.7、B【分析】根据二次函数的图象可逐项判断求解即可.【题目详解】解:抛物线与x轴有两个交点,
∴△>0,
∴b2−4ac>0,故①错误;
由于对称轴为x=−1,
∴x=−3与x=1关于x=−1对称,
∵x=−3,y<0,
∴x=1时,y=a+b+c<0,故②错误;
∵对称轴为x=−=−1,
∴2a−b=0,故③正确;
∵顶点为B(−1,3),
∴y=a−b+c=3,
∴y=a−2a+c=3,
即c−a=3,故④正确,
故选B.【题目点拨】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型.8、A【分析】证出、、、分别是、、、的中位线,得出,,,,证出四边形为平行四边形,当时,,得出平行四边形是菱形;当时,,即,即可得出菱形是正方形.【题目详解】点,分别是,的中点,点,分别是,的中点,、、、分别是、、、的中位线,,,,,四边形为平行四边形,当时,,平行四边形是菱形;当时,,即,菱形是正方形;故选:.【题目点拨】本题考查了正方形的判定、平行四边形的判定、菱形的判定以及三角形中位线定理;熟练掌握三角形中位线定理是解题的关键.9、D【分析】根据题意原抛物线的顶点坐标为(0,0),根据平移规律得平移后抛物线顶点坐标为(1,-3),根据抛物线的顶点式求解析式.【题目详解】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,-3),∴平移后抛物线解析式为.故选:D.【题目点拨】本题考查抛物线的平移与抛物线解析式的联系,关键是把抛物线的平移转化为顶点的平移,利用顶点式求解析式.10、D【解题分析】根据中心对称图形的概念判断即可.【题目详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【题目点拨】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、【分析】依据3a=4b,即可得到a=b,代入代数式进行计算即可.【题目详解】解:∵3a=4b,∴a=b,∴===.故答案为:.【题目点拨】本题主要考查了比例的性质,求出a=b是解题的关键.12、50.【分析】作CD⊥直线l,由∠ACB=∠CAB=30°,AB=50m知AB=BC=50m,∠CBD=60°,根据CD=BCsin∠CBD计算可得.【题目详解】如图,过点C作CD⊥直线l于点D,∵∠BCD=30°,∠ACD=60°,∴∠ACB=∠CAB=30°,∵AB=100m,∴AB=BC=100m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BCsin∠CBD=100×=50(m),故答案是:50.【题目点拨】本题主要考查解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.13、【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【题目详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C处所需的时间大约为:20÷40=(小时).故答案为.【题目点拨】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.14、1【解题分析】根据中位数的定义进行求解即可.【题目详解】∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是=1小时;故答案为:1.【题目点拨】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).15、100【解题分析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.16、75°【解题分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【题目详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75°.【题目点拨】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.17、1【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【题目详解】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣100°﹣90°=80°,∴.故答案为:1.【题目点拨】此题考查了切线的性质以及圆周角定理.解题的关键是掌握辅助线的作法,熟练掌握切线的性质.18、4+或4﹣【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【题目详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如图2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.综上所述,BC的长是4+或4﹣.故答案为:4+或4﹣.【题目点拨】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.三、解答题(共66分)19、(1)见解析;(2)y=x+4;(3).【分析】(1)根据矩形的性质和余角的性质得到∠A=∠ADC=∠DCB=90°,∠ADE=∠CDF,最后运用相似三角形的判定定理证明即可;(2)运用相似三角形的性质解答即可;(3)根据轴对称图形的性质可得DE=BE,再运用勾股定理可求出AE,DE的长,最后用余弦的定义解答即可.【题目详解】(1)证明∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.【题目点拨】本题属于相似形三角形综合题,考查了相似三角形的判定和性质、矩形的性质、勾股定理、轴对称图形的性质等知识,灵活运用相似三角形的判定和性质是解答本题的关键.20、(1);(2),,;(3).【分析】(1)可根据二次函数图像左加右减,上加下减的平移规律进行解答.(2)令x=0即可得到点C的坐标,令y=0即可得到点B,A的坐标(3)有图像可知的对称轴,即可得出点D的坐标;由图像得出的坐标,设直线的解析式为,代入数值,即可得出直线的解析式,就可以得出点P的坐标.【题目详解】解:(1)二次函数向右平移个单位长度得,,再向下平移个单位长度得故答案为:.(2)由抛物线的图象可知,.当时,,解得:,.,.(3)由抛物线的图象可知,其对称轴的为直线,将代入抛物线,可得.由抛物线的图象可知,点关于抛物线的对称轴轴的对称点为.设直线的解析式为,解得:直线直线的解析式为与轴交点即为点,.【题目点拨】本题考查了二次函数的综合,熟练掌握二次函数的性质及图形是解题的关键.21、(1);(2)见解析【分析】(1)由线段的和差关系可求出CE的长,由AB//CD可证明△CDE∽△ABE,根据相似三角形的性质即可求出CD的长;(2)根据AB、AE、AC的长可得,由∠A为公共角,根据两组对应边成比例,且对应的夹角相等即可证明△ABE∽△ACB.【题目详解】(1)∵AE=4,AC=1∴CE=AC-AE=1-4=5∵AB∥CD,∴△CDE∽△ABE,∴,∴.(2)∵,∴∵∠A=∠A,∴△ABE∽△ACB【题目点拨】本题考查相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相似三角形的判定定理是解题关键.22、(1)-;(2)-.【分析】(1)根据二次根式混合运算法则计算即可;(2)代入特殊角的三角函数值,根据0指数幂、负整数指数幂、二次根式及绝对值的运算法则计算即可.【题目详解】(1)()=(2-2)-6+6×=22-6+=6-4-6+=-.(2)-14+===-【题目点拨】本题考查实数的混合运算,熟练掌握运算法则并熟记特殊角的三角函数值是解题关键.23、(1)图见解析,;(2)三分线长分别是和【分析】(1)根据等腰三角形的判定定理容易画出图形;由等腰三角形的性质即可求出各个顶角的度数;(2)根据等腰三角形的判定定力容易画出图形,设,则,,则,得出对应边成比例,设,得出方程组,解方程即可得.【题目详解】解:(1)作图如图1、图2所示:在图1中,即三个等腰三角形的顶角分别为在图2中,,,即三个等腰三角形的顶角分别为(2)如图3所示,就是所求的三分线设,则,此时,设,∵,∴∵,∴,解方程组解得:,或(负值舍去),即三分线长分别是和【题目点拨】本题是相似形的综合性题目,考查了等腰三角形的判定和性质、等腰三角形的画图、相似三角形的判定和性质、解方程组等知识,本题考查学生学习的理解能力及动手创新能力,综合性较强,有一定难度.24、(1);(2);(3)当或时,满足条件的点只有一个.【解题分析】(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.(3)由圆周角定理可得是顶角为120°的等腰三角形,再分情况讨论:①当与相切时,结合题意画出图形,过点作,并延长与交于点,连结,,设半径为,由相似三角形的判定和性质即可求得长;②当经过点时,结合题意画出图形,过点作,设半径为,在中,根据勾股定理求得,再由相似三角形的判定和性质即可求得长;③当经过点时,结合题意画出图形,此时点与点重合,且恰好在点处,由此可得长.【题目详解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,过,,作外接圆,圆心为,∴是顶角为120°的等腰三角形.①当与相切时,如图1,过点作,并延长与交于点,连结,设的半径则,,解得.∴,.易知,可得,则∴.②当经过点时,如图2,过点作,垂足为.设的半径,则.在中,,解得,∴易知,可得③当经过点时,如图3,此时点与点重合,且恰好在点处,可得.综上所述,当或时,满足条件的点只有一个.【题目点拨】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学课外活动计划汇编6篇
- 试用期个人工作总结
- 感恩老师+演讲稿范文集锦三篇
- 房产销售主管月工作总结
- DB31-T 1394-2023 塑料制品绿色设计评价导则
- 男性患者自助式清洁间歇导尿
- 《社会保险法》讲座课件
- 吉林省长春市虹麓综合高中2023-2024学年高一上学期期末物理试卷
- 做好安全防范
- 酒店相关职业规划
- 运筹学(B)智慧树知到期末考试答案2024年
- 宋小宝杨树林宋晓峰小品《甄嬛后传》年会台词剧本完整版欢乐喜剧人
- 《水氢氢冷汽轮发电机检修导则 第5部分:内冷水系统检修》
- 山羊胚胎生产及冷冻保存技术规范
- 华为技术有限公司财务报表分析-毕业论文
- 医德医风考试试题及答案
- 2024年广东省高三一模英语试题答案讲评词汇积累课件
- 垃圾箱施工方案
- DB21-T 2961-2018双条杉天牛防治技术规程
- 7.1开放是当代中国的鲜明标识课件-高中政治选择性必修一当代国际政治与经济(1)2
- 经济法课件:企业破产法
评论
0/150
提交评论