版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届青海省海南州数学九年级第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. B. C. D.2.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是()A. B. C.1 D.23.抛物线的顶点坐标为()A. B. C. D.4.已知x=﹣2是一元二次方程x2+mx+4=0的一个解,则m的值是()A.﹣4 B.4 C.0 D.0或45.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是()A.3:19 B. C.3: D.4:217.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.8.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.709.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A.2 B.0 C.0或2 D.0或﹣210.将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于()A.-3 B.1 C.4 D.711.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.12.关于反比例函数图象,下列说法正确的是()A.必经过点 B.两个分支分布在第一、三象限C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称二、填空题(每题4分,共24分)13.在双曲线的每个分支上,函数值y随自变量x的增大而增大,则实数m的取值范围是________.14.一张等腰三角形纸片,底边长为15,底边上的高为22.5,现沿底边依次从下往上裁剪宽度均为3的矩形纸条,如图,已知剪得的纸条中有一张是正方形(正方形),则这张正方形纸条是第________张.15.若=,则=__________.16.再读教材:如图,钢球从斜面顶端静止开始沿斜面滚下,速度每秒增加1.5m/s,在这个问题中,距离=平均速度时间t,,其中是开始时的速度,是t秒时的速度.如果斜面的长是18m,钢球从斜面顶端滚到底端的时间为________s.17.函数的自变量的取值范围是.18.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.三、解答题(共78分)19.(8分)如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.(1)如果,,①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为,线段的数量关系为;②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.20.(8分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?21.(8分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P的坐标,若不存在,请说明理由.22.(10分)如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半径.23.(10分)解答下列问题:(1)计算:;(2)解方程:;24.(10分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.25.(12分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.26.如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【题目详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故选:D.【题目点拨】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.2、C【分析】先解一元二次方程求出m,n即可得出答案.【题目详解】解方程得或,则,解方程,得或,则,,故选:C.【题目点拨】本题考查了解一元二次方程,掌握方程解法是解题关键.3、D【解题分析】根据抛物线顶点式的性质进行求解即可得答案.【题目详解】∵解析式为∴顶点为故答案为:D.【题目点拨】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.4、B【分析】直接把x=﹣2代入已知方程就得到关于m的方程,再解此方程即可.【题目详解】∵x=﹣2是一元二次方程x2+mx+4=0的一个解,
∴4−2m+4=0,
∴m=4.
故选B.【题目点拨】本题考查一元二次方程的解,解题的关键是将x=﹣2代入已知方程.5、C【分析】根据是等腰三角形,进行分类讨论【题目详解】是菱形,,不符合题意所以选C6、D【分析】根据已知条件易证△ADC∽△ABC,再利用相似三角形的性质解答即可.【题目详解】∵在△ABC中,∠ACB=90°,CD⊥AB于点D,∴∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ABC,∴AC:AB=2:5,是相似比,∴S△ADC:S△ABC=4:25,∴S△ADC:S△BDC=4:(25﹣4)=4:21,故选D.【题目点拨】本题考查了相似三角形的判定和性质,证明△ADC∽△ABC是解决问题的关键.7、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【题目详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【题目点拨】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.8、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【题目详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【题目点拨】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、A【解题分析】试题分析:∵x=1是一元二次方程x1﹣1mx+4=0的一个解,∴4﹣4m+4=0,∴m=1.故选A.考点:一元二次方程的解.10、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n=1,然后计算m+n即可.【题目详解】x2-4x+3=0,
x2-4x=-3
x2-4x+4=-3+4,
(x-2)2=1,
即n=1.
故选B.【题目点拨】本题考查了解一元二次方程的应用,解题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).11、C【解题分析】∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选C.12、D【分析】把(2,1)代入即可判断A,根据反比例函数的性质即可判断B、C、D.【题目详解】A.当x=2时,y=-1≠1,故不正确;B.∵-2<0,∴两个分支分布在第二、四象限,故不正确;C.两个分支不关于轴成轴对称,关于原点成中心对称,故不正确;D.两个分支关于原点成中心对称,正确;故选D.【题目点拨】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限.反比例函数图象的两个分支关于原点成中心对称.二、填空题(每题4分,共24分)13、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【题目详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【题目点拨】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.14、6【分析】设第x张为正方形纸条,由已知可知,根据相似三角形的性质有,从而可计算出x的值.【题目详解】如图,设第x张为正方形纸条,则∵∴∴即解得故答案为6【题目点拨】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.15、【解题分析】由比例的性质即可解答此题.【题目详解】∵,∴a=b,∴=,故答案为【题目点拨】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.16、【分析】根据题意求得钢球到达斜面低端的速度是1.5t.然后由“平均速度时间t”列出关系式,再把s=18代入函数关系式即可求得相应的t的值.【题目详解】依题意得s=×t=t2,把s=18代入,得18=t2,解得t=,或t=-(舍去).故答案为【题目点拨】本题考查了一元二次方程的应用,根据实际问题列出二次函数关系式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.17、x≠1【解题分析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠118、6.1【解题分析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.三、解答题(共78分)19、(1)①垂直,相等;②见解析;(2)见解析.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)过点A作AG⊥AC交CB或CB的延长线于点G,于是得到∠GAC=90°,可推出∠ACB=∠AGC,证得AC=AG,根据(1)的结论于是得到结果.【题目详解】(1)①正方形ADEF中,AD=AF.∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF.在△DAB与△FAC中,,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为垂直、相等;②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵,∴△BAD≌△CAF,∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°,∴CF⊥BD;(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°.∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG.在△GAD与△CAF中,,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【题目点拨】本题考查了全等三角形的判定和性质,正方形的性质,余角的性质,过点A作AG⊥AC交CB的延长线于点G构造全等三角形是解题的关键.20、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【题目详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【题目点拨】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.21、(1);(2)当时,线段PC有最大值是2;(3),,【分析】把x=0,y=0分别代入解析式可求点A,点B坐标,由待定系数法可求解析式;设点C,可求PC,由二次函数的性质可求解;设点P的坐标为(x,−x+2),则点C,分三种情况讨论,由平行四边形的性质可出点P的坐标.【题目详解】解:(1)可求得A(0,2),B(4,0)∵抛物线经过点A和点B∴把(0,2),(4,0)分别代入得:解得:∴抛物线的解析式为.(2)设点P的坐标为(x,−x+2),则C()∵点P在线段AB上∴∴当时,线段PC有最大值是2(3)设点P的坐标为(x,−x+2),∵PC⊥x轴,∴点C的横坐标为x,又点C在抛物线上,∴点C(x,)①当点P在第一象限时,假设存在这样的点P,使四边形AOPC为平行四边形,则OA=PC=2,即,化简得:,解得x1=x2=2把x=2代入则点P的坐标为(2,1)②当点P在第二象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把,则点P的坐标为;③当点P在第四象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把则点P的坐标为综上,使以O、A.
P、C为顶点的四边形是平行四边形,满足的点P的坐标为.【题目点拨】本题是二次函数综合题,考查待定系数法求函数解析式,最值问题,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的思想解决问题.22、(1)详见解析;(2)⊙O的半径是.【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【题目详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC=1,在Rt△ACB中,AB=,AC=1,由勾股定理得:BC==3,∵OD⊥BC,OD过O,∴BD=DC=BC==1.5,在Rt△ODB中,由勾股定理得:OB=,即⊙O的半径是.【题目点拨】此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.23、(1);(2),【分析】(1)先按照二次根式的乘除法计算,然后去条绝对值,再计算加减法;(2)采用配方法解方程即可.【题目详解】解:(1)原式;(2)∴,【题目点拨】本题考查了二次根式的混合运算与解一元二次方程,熟练掌握二次根式的乘除运算法则和配方法是解题的关键.24、(1)150°;(2)详见解析;(3)15°【分析】(1)根据旋转的性质,利用补角性质即可解题;(2)根据旋转后的对应边相等即可解题;(3)利用外角性质即可解题.【题目详解】解:(1)∵点D,A,C在同一直线上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋转了150°;(2)根据旋转的性质,可知AC=AE,∴△AEC是等腰三角形;(3)根据旋转的性质可知,∠CAE=∠BAD=150°,AC=AE,∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.【题目点拨】本题考查了旋转变换的性质,理解旋转三要素:旋转中心、旋转方向、旋转角度的概念、掌握旋转变换的性质是解题的关键.25、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【题目详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【题目点拨】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.26、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出点A、B的坐标,令x=0,求出y即可求出点C的坐标,再根据对称轴公式即可求出抛物线的对称轴;(1)先将二次函数的一般式化成顶点式,即可求出点D的坐标,利用待定系数法求出直线AC的解析式,从而求出点F的坐标,根据“铅垂高,水平宽”求面积即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五四青年奋进新征程学习心得10篇
- 促销活动策划方案模板汇编五篇
- 教务工作计划4篇
- 2022年幼儿园教师工作总结
- 北京冬残奥会观后感600字6篇
- 三八妇女节演讲稿范文
- 交通安全年终工作总结报告
- 安全演讲稿汇编十篇
- 医保科工作总结
- 邮储银行实习报告(6篇)
- 体育场馆租赁合同与体育场馆运营合作协议
- 正高级会计师答辩面试资料
- 脊柱四肢及肛门直肠检查
- 音乐与人生-西南交通大学中国大学mooc课后章节答案期末考试题库2023年
- 交通运输布局对区域发展的影响-扬州的兴衰高一地理人教版(2019)必修第二册
- 2023年高考全国新课标Ⅱ卷作文“安静一下不被打扰”导写及范文
- 实验指导书-基于思科模拟器的静态NAT的配置
- 商洛市商州区金矿煤矿矿山地质环境保护与土地复垦方案
- 中国铁塔股份有限公司代维交接指南(2017年)
- 常用药物皮试配制法和药物过敏反应的急救措施
- 医学微生物学知到章节答案智慧树2023年山东第一医科大学
评论
0/150
提交评论