2024届江阴南闸实验学校数学九上期末综合测试试题含解析_第1页
2024届江阴南闸实验学校数学九上期末综合测试试题含解析_第2页
2024届江阴南闸实验学校数学九上期末综合测试试题含解析_第3页
2024届江阴南闸实验学校数学九上期末综合测试试题含解析_第4页
2024届江阴南闸实验学校数学九上期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江阴南闸实验学校数学九上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次函数与一次函数在同一坐标系中的大致图象可能是()A. B.C. D.2.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2) B.(﹣2,﹣1) C.(1,2) D.(2,1)3.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个 B.5个 C.不足4个 D.6个或6个以上4.如果两个相似多边形的面积之比为,那么它们的周长之比是()A. B. C. D.5.如图,,、,…是分别以、、,…为直角顶点,一条直角边在轴正半轴上的等腰直角三角形,其斜边的中点,,,…均在反比例函数()的图象上.则的值为()A. B.6 C. D.6.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18 B.16 C.17.若,则的值为()A.1 B. C. D.8.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=39.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1<x2),则下列判断正确的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<310.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3二、填空题(每小题3分,共24分)11.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C=__.12.在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为_____.13.已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是_____.14.二次函数的部分图像如图所示,要使函数值,则自变量的取值范围是_______.15.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.16.____.17.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.18.如图,矩形ABCD中,AB=3cm,AD=6cm,点E为AB边上的任意一点,四边形EFGB也是矩形,且EF=2BE,则S△AFC=__________cm2.三、解答题(共66分)19.(10分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.20.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.21.(6分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.22.(8分)假期期间,甲、乙两位同学到某影城看电影,影城有《我和我的祖国》(记为)、《中国机长》(记为)、《攀登者》(记为)三部电影,甲、乙两位同学分别从中任选一部观看,每部被选中的可能性相同.用树状图或列表法求甲、乙两位同学选择同一部电影的概率.23.(8分)如图,在平行四边形中,过点作,垂足为,连接,为上一点,且.(1)求证:.(2)若,,,求的长.24.(8分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.25.(10分)如图,已知中,以为直径的⊙交于,交于,,求的度数.26.(10分)如图,抛物线与直线相交于,两点,且抛物线经过点(1)求抛物线的解析式.(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【分析】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(-1,0),即可排除A、B,然后根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象进行判断.【题目详解】解:由一次函数可知,一次函数的图象与轴交于点,排除;当时,二次函数开口向上,一次函数经过一、三、四象限,当时,二次函数开口向下,一次函数经过二、三、四象限,排除;故选.【题目点拨】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.2、A【题目详解】∵正比例函数y=2x和反比例函数y=的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(-1,-2).故选A.3、D【解题分析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【题目详解】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【题目点拨】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.4、A【分析】根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【题目详解】解:∵两个相似多边形面积的比为,

∴两个相似多边形周长的比等于,

∴这两个相似多边形周长的比是.

故选:A.【题目点拨】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.5、A【分析】过点分别作x轴的垂线,垂足分别为,得出△为等腰直角三角形,进而求出,再逐一求出,…的值,即可得出答案.【题目详解】如图,过点分别作x轴的垂线,垂足分别为∵△为等腰直角三角形,斜边的中点在反比例函数的图像上∴(2,2),即∴设,则此时(4+a,a)将(4+a,a)代入得a(4+a)=4解得或(负值舍去)即同理,,…,∴故答案选择A.【题目点拨】本题考查的是反比例函数的图像与性质以及反比例函数上点的特征,难度系数较大,解题关键是根据点在函数图像上求出y的值.6、B【分析】根据简单概率的计算公式即可得解.【题目详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16故选B.考点:简单概率计算.7、D【解题分析】∵,∴==,故选D8、D【分析】利用因式分解法求解可得.【题目详解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.【题目点拨】本题考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9、B【解题分析】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【题目详解】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,∵-1<0,∴两个抛物线的开口向下,∴x1<﹣2<3<x2,故选B.【题目点拨】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.10、B【解题分析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.106144二、填空题(每小题3分,共24分)11、【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【题目详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【题目点拨】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.12、【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【题目详解】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案为.【题目点拨】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.13、y1<y1【分析】先求得函数的对称轴为,再判断、在对称轴右侧,从而判断出与的大小关系.【题目详解】∵函数y=﹣(x+1)1+1的对称轴为,∴、在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,且3>1,∴y1<y1.故答案为:y1<y1.【题目点拨】本题考查了待定系数法二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出答案是解题关键.14、【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【题目详解】根据二次函数的图象可知:对称轴为,已知一个点为,

根据抛物线的对称性,则点关于对称性对称的另一个点为,

所以时,的取值范围是.故答案为:.【题目点拨】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点的对称点是解题的关键.15、6【分析】作辅助线AD⊥BC构造直角三角形ABD,利用锐角∠B的正弦函数的定义求出三角形ABC底边BC上的高AD的长度,然后根据三角形的面积公式来求△ABC的面积即可.【题目详解】过A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB•sinB=4•sin45°=4×=,∴S△ABC=BC•AD=×6×=,故答案为:【题目点拨】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC底边BC上的高线AD构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD的长度的.16、【分析】根据特殊角度的三角函数值,,,代入数据计算即可.【题目详解】∵,,,∴原式=.【题目点拨】熟记特殊角度的三角函数值是解本题的关键.17、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【题目详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【题目点拨】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.18、9【解题分析】连接BF,过B作BO⊥AC于O,过点F作FM⊥AC于M.Rt△ABC中,AB=3,BC=6,.∵∠CAB=∠BAC,∠AOB=∠ABC,∴△AOB∽△ABC,,.∵EF=BG=2BE=2GF,BC=2AB,∴Rt△BGF和Rt△ABC中,,∴Rt△BGF∽Rt△ABC,∴∠FBG=∠ACB,∴AC∥BF,∴S△AFC=AC×FM=9.【题目点拨】△ACF中,AC的长度不变,所以以AC为底边求面积.因为两矩形相似,所以易证AC∥BF,从而△ACF的高可用BO表示.在△ABC中求BO的长度,即可计算△ACF的面积.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【题目详解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.20、(1);(2).【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【题目详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=9,然后解方程得到满足条件的k的值.【题目详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【题目点拨】本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.22、,见解析【分析】列表法展示所有等可能的结果数,找出甲、乙选择同1部电影的结果数,然后利用概率公式求解.【题目详解】解:列表如下:由表可知,共有9种等可能结果,其中选择同一部电影的结果为3种,∴(他们选择同一部电影).【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、(1)见解析;(2)【解题分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.【题目详解】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴.∵△ABF∽△EAD,,..【题目点拨】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.24、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得,,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得∠BCF=∠BEF=10°,从而计算得,完成求解;(3)由(1)和(2)知,CF∥AB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【题目详解】(1)∵将线段EB绕点E逆时针旋转80°,点B的对应点是点F∴,∴,即∵AB=AC=1,D是BC的中点∴,∴,∴,∴∴∴(2)如图,连接BE、EC、BF、EF由(1)可知:EB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论