2024届海南海口市琼山区国兴中学数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
2024届海南海口市琼山区国兴中学数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
2024届海南海口市琼山区国兴中学数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
2024届海南海口市琼山区国兴中学数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
2024届海南海口市琼山区国兴中学数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南海口市琼山区国兴中学数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.2.如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为()A. B. C. D.3.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,的实数根是3或6,的实数根是1或2,,则一元二次方程与为相似方程.下列各组方程不是相似方程的是()A.与 B.与C.与 D.与4.关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是()A. B. C. D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.数据1,3,3,4,5的众数和中位数分别为()A.3和3 B.3和3.5 C.4和4 D.5和3.57.一元二次方程有实数解的条件()A. B. C. D.8.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1:9,则OC:CF的值为()A.1:2 B.1:3 C.1:8 D.1:99.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A. B. C. D.10.方程x2﹣x=0的解为()A.x1=x2=1 B.x1=x2=0 C.x1=0,x2=1 D.x1=1,x2=﹣1二、填空题(每小题3分,共24分)11.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.12.写出一个经过点(0,3)的二次函数:________.13.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.14.如图,已知AD∥BE∥CF,它们依次交直线、于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是__.15.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.16.如图,的顶点A在双曲线上,顶点B在双曲线上,AB中点P恰好落在y轴上,则的面积为_____.17.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.18.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为_____.三、解答题(共66分)19.(10分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.20.(6分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)21.(6分)如图,抛物线y=ax2+bx+4(a≠0)与轴交于点B(-3,0)和C(4,0)与轴交于点A.(1)a=,b=;(2)点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3)点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.22.(8分)如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.23.(8分)佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用.设每间房每天的定价增加元,宾馆获利为元.(1)求与的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?24.(8分)如图,已知,是的中点,过点作.求证:与相切.25.(10分)因抖音等新媒体的传播,西安已成为最著名的网红旅游城市之一,2018年“十一”黄金周期间,接待游客已达万人次,古城西安美食无数,一家特色小面店希望在长假期间获得较好的收益,经测算知,该小面的成本价为每碗元,借鉴以往经验;若每碗小面卖元,平均每天能够销售碗,若降价销售,毎降低元,则平均每天能够多销售碗.为了维护城市形象,店家规定每碗小面的售价不得超过元,则当每碗小面的售价定为多少元时,店家才能实现每天盈利元?26.(10分)新能源汽车已逐渐成为人们的交通工具,据某市某品牌新能源汽车经销商1至3月份统计,该品牌新能源汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为6.3万元/辆,售价为6.8万元/辆,则该经销商1至3月份共盈利多少万元?

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,则y=4×()=,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.2、C【分析】连接OB,由题意可知,△COB是等边三角形,即可求得∠C,再由三角形内角和求得∠BAC,最后根据切线的性质和余角的定义解答即可.【题目详解】解:如图:连接OB∵为的直径∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等边三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直线为圆的一条切线∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案为C.【题目点拨】本题主要考查了圆的性质、等边三角形以及切线的性质等知识点,根据题意说明△COB是等边三角形是解答本题的关键.3、C【分析】根据“相似方程”的定义逐项分析即可.【题目详解】A.∵,∴.∴x1=4,x2=-4,∵,∴x1=5,x2=-5.∵4:(-4)=5:(5),∴与是相似方程,故不符合题意;B.∵,∴x1=x2=6.∵,∴(x+2)2=0,∴x1=x2=-2.∵6:6=(-2):(-2),∴与是相似方程,故不符合题意;C.∵,∴,∴x1=0,x2=7.∵,∴,∴(x-2)(x+3)=0,∴x1=2,x2=-3.∵0:7≠2:(-3),∴与不是相似方程,符合题意;D.∵,∴x1=-2,x2=-8.∵,∴(x-1)(x-4)=0,∴x1=1,x2=4.∵(-2):(-8)=1:4,∴与是相似方程,故不符合题意;故选C.【题目点拨】本题考查了新定义运算,以及一元二次方程的解法,正确理解“相似方程”的定义是解答本题的关键.4、D【分析】二次函数的图象过点,则,而,则,,二次函数的图象的顶点在第一象限,则,,即可求解.【题目详解】∵关于的一元二次方程有一个根是﹣1,∴二次函数的图象过点,∴,∴,,则,,∵二次函数的图象的顶点在第一象限,∴,,将,代入上式得:,解得:,,解得:或,故:,故选D.【题目点拨】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【题目详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【题目点拨】本题考查的是中心对称图形和轴对称图形的定义.6、A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【题目详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【题目点拨】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.7、B【分析】根据一元二次方程的根的判别式即可得.【题目详解】一元二次方程有实数解则,即解得故选:B.【题目点拨】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.8、A【分析】利用位似的性质和相似三角形的性质得到,然后利用比例性质求出即可.【题目详解】解:∵△ABC与△DEF位似,∴=,∴,∴,故选A.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.9、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【题目详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【题目点拨】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.10、C【解题分析】通过提取公因式对等式的左边进行因式分解,然后解两个一元一次方程即可.【题目详解】解:∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故选:C.【题目点拨】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式的方法是解题的关键.二、填空题(每小题3分,共24分)11、.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】共个数,大于的数有个,(大于);故答案为.【题目点拨】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、(答案不唯一)【分析】设二次函数的表达式为y=x2+x+c,将(0,3)代入得出c=3,即可得出二次函数表达式.【题目详解】解:设二次函数的表达式为y=ax2+bx+c(a≠0),

∵图象为开口向上,且经过(0,3),

∴a>0,c=3,

∴二次函数表达式可以为:y=x2+3(答案不唯一).

故答案为:y=x2+3(答案不唯一).【题目点拨】本题主要考查了用待定系数法求二次函数解析式,得出c=3是解题关键,属开放性题目,答案不唯一.13、【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【题目详解】解:点M,N分别是AB,BC的中点,,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,,,,,故答案为:.【题目点拨】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大.14、6【分析】由平行得比例,求出的长即可.【题目详解】解:,,,,解得:,故答案为:6.【题目点拨】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.15、1【分析】根据题意,讨论当k=0时,符合题意,当时,一元二次方程有两个相等的实数根即,据此代入系数,结合完全平方公式解题即可.【题目详解】当k=0,方程为一元一次方程,没有两个实数根,故关于的方程有两个相等的实数根,即即故答案为:1;.【题目点拨】本题考查一元二次方程根与系数的关系、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.16、1【分析】过A作AE⊥y轴于E,过B作BD⊥y轴于D,得到∠AED=∠BDP=90°,根据全等三角形的性质得到S△BDP=S△AED,根据反比例函数系数k的几何意义得到S△OBD=3,S△AOE=4,于是得到结论.【题目详解】解:过A作AE⊥y轴于E,过B作BD⊥y轴于D,

∴∠AED=∠BDP=90°,

∵点P是AB的中点,

∴BP=AP,

∵∠BPD=∠APE,

∴△BPD≌△APE(AAS),

∴S△BDP=S△AED,∵顶点A在双曲线,顶点B在双曲线上,∴S△OBD=3,S△AOE=4,

∴△OAB的面积=S△OBD+S△AOE=1,

故答案为:1.【题目点拨】本题考查了反比例函数系数k的几何意义,全等三角形的判定和性质,三角形的面积的计算,正确的作出辅助线是解题的关键.17、1【解题分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【题目详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【题目点拨】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.18、﹣1<x<1.【分析】根据图象直接可以得出答案【题目详解】如图,从二次函数y=x2﹣2x﹣1的图象中可以看出函数值小于0时x的取值范围为:﹣1<x<1【题目点拨】此题重点考察学生对二次函数图象的理解,抓住图象性质是解题的关键三、解答题(共66分)19、(1)详见解析;(2).【题目详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.考点:列表法与树状图法.20、“大帆船”AB的长度约为94.8m【分析】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,得BF=AE=CE=(x+40)m,AE=x,列出方程,求出x的值,进而即可求解.【题目详解】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,易知四边形ABFE是矩形,∴AB=EF,AE=BF.∵∠DCA=∠ACB+∠BCD=18.5°+16.5°=45°,∴BF=AE=CE=(x+40)m.∵∠CDA=110°,∴∠ADE=60°.∴AE=x·tan60°=x,∴x=x+40,解得:x≈54.79(m).∴BF=CE=54.79+40=94.79(m).∴CF=≈189.58(m).∴EF=CF-CE=189.58-94.79≈94.8(m).∴AB=94.8(m).答:“大帆船”AB的长度约为94.8m.【题目点拨】本题主要考查三角函数的实际应用,添加辅助线,构造直角三角形,熟练掌握三角函数的定义,是解题的关键.21、(1),;(2);(3)【解题分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=BM=(5-t),易证△BFE∽△BOA,所以即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,设出点P坐标,易证△BGO∽△BPD,所以,即可解答.【题目详解】解:解:(1)∵抛物线过点B(-3,0)和C(4,0),

∴,

解得:;(2)∵B(-3,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=BN=t,又因为AO⊥BO,所以ME∥AO,所以,即,解得:t=;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=BM=(5-t),易证△BFE∽△BOA,所以,即,解得:t=.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,设P(m,-m2+m+4),因为GO∥PD,∴△BGO∽△BPD,∴,即,解得:m1=,m2=-3(点P在第一象限,所以不符合题意,舍去),m1=时,-m2+m+4=故点P的坐标为【题目点拨】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.22、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析.【分析】(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标;(2)连接BC,交对称轴于点P,连接AP、AC.求得C点的坐标后然后确定直线BC的解析式,最后求得其与x=2与直线BC的交点坐标即为点P的坐标;(3)①设D(t,-t2+4t+1),设折线D-E-O的长度为L,求得L的最大值后与当点D与Q重合时L=9+2=11<相比较即可得到答案;②假设四边形DCEB为平行四边形,则可得到EF=DF,CF=BF.然后根据DE∥y轴求得DF,得到DF>EF,这与EF=DF相矛盾,从而否定是平行四边形.【题目详解】解:(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如图1,连接BC,交对称轴于点P,连接AP、AC.∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.∵点A关于对称轴x=2的对称点是点B(1,0),抛物线y=-x2+4x+1与y轴交点C的坐标为(0,1).∴由几何知识可知,PA+PC=PB+PC为最小.设直线BC的解析式为y=kx+1,将B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P的坐标为(2,3).(3)①这个同学的说法不正确.∵设D(t,-t2+4t+1),设折线D-E-O的长度为L,则L=−t2+4t+1+t=−t2+1t+1=−(t−)2+,∵a<0,∴当t=时,L最大值=.而当点D与Q重合时,L=9+2=11<,∴该该同学的说法不正确.②四边形DCEB不能为平行四边形.如图2,若四边形DCEB为平行四边形,则EF=DF,CF=BF.∵DE∥y轴,∴,即OE=BE=2.1.当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,这与EF=DF相矛盾,∴四边形DCEB不能为平行四边形.【题目点拨】本题考查二次函数及四边形的综合,难度较大.23、(1);(2)每间房价为元时,宾馆可获利元【分析】(1)根据题意表示出每间房间的利润和房间数,进而求得答案;(2)代入(1)求出的函数式,解方程即可,注意要符合条件的.【题目详解】解:由题意得答:与的函数关系式为:由可得:令,即解得解得此时每间房价为:(元)答:每间房价为元时,宾馆可获利元。【题目点拨】本题考查的是盈利问题的二次函数式及二次函数的最值问题,通常做法是先列出二次函数式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论