版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省枣庄市台儿庄区九年级数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. B. C. D.2.如图,菱形中,过顶点作交对角线于点,已知,则的大小为()A. B. C. D.3.如图是二次函数的图象,使成立的的取值范围是()A. B.C. D.4.把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是()A. B.C. D.5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.方程的解是()A. B., C., D.7.如图,在△ABO中,∠B=90º,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是().A.⊙P的半径为B.经过A,O,B三点的抛物线的函数表达式是C.点(3,2)在经过A,O,B三点的抛物线上D.经过A,O,C三点的抛物线的函数表达式是8.下列图形中不是中心对称图形的是()A. B. C. D.9.下列数是无理数的是()A. B. C. D.10.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.11.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定12.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,-2) B.(-2,-3) C.(1,-6) D.(-6,1)二、填空题(每题4分,共24分)13.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.14.已知y=x2+(1﹣a)x+2是关于x的二次函数,当x的取值范围是0≤x≤4时,y仅在x=4时取得最大值,则实数a的取值范围是_____.15.计算:=________.16.分解因式:a2b﹣b3=.17.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=_____.18.设、是关于的方程的两个根,则__________.三、解答题(共78分)19.(8分)“2019大洋湾盐城马拉松”的赛事共有三项:A,“全程马拉松”、B,“半程马拉松”、C.“迷你健身跑”,小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你健身跑”项目组的概率为;(2)求小明和小刚被分配到不同项目组的概率.20.(8分)雾霾天气严重影响人民的生活质量.在今年“元旦”期间,某校九(1)班的综合实践小组同学对“雾霾天气的主要成因”随机调查了本地部分市民,并对调查结果进行了整理,绘制了如图不完整的统计图表,观察分析并回答下列问题.组别雾霾天气的主要成因A工业污染B汽车尾气排放C炉烟气排放D其他(滥砍滥伐等)(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图;(3)若该地区有100万人口,请估计持有A、B两组主要成因的市民有多少人?21.(8分)内接于⊙,是直径,,点在⊙上.(1)如图,若弦交直径于点,连接,线段是点到的垂线.①问的度数和点的位置有关吗?请说明理由.②若的面积是的面积的倍,求的正弦值.(2)若⊙的半径长为,求的长度.22.(10分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.23.(10分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.图1图2材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB水平,主索最低点为点P,点P距离桥面为2m;图3为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?24.(10分)2019年9月30日,由著名导演李仁港执导的电影《攀登者》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用模球的办法决定胜负,获胜者去看电影,游戏规则如下:在一个不透明的袋子中装有编号1-4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出随机摸球所有可能的结果;(2)分别求出小亮和小丽获胜的概率,并判断这种游戏规则对两人公平吗?25.(12分)某学校为了了解名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在这一组的频率为.请回答下列问题:(1)在这个调查中,样本容量是______________;平均成绩是_________________;(2)请补全成绩在这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了分,求该校学生体育成绩的年平均增长率.26.在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.(1)点在函数的图象上,点的“坐标和”是;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据平行线分线段成比例定理与相似三角形的性质,逐项判断即得答案.【题目详解】解:A、∵DE∥BC,∴,故本选项正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误;C、∵DE∥BC,∴△ADE∽△ABC,∴,故本选项错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误.故选:A.【题目点拨】本题考查了平行线分线段成比例定理和相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解答的关键.2、D【分析】先说明ABD=∠ADC=∠CBD,然后再利用三角形内角和180°求出即可∠CBD度数,最后再用直角三角形的内角和定理解答即可.【题目详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案为D.【题目点拨】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.3、A【分析】先找出抛物线与x轴的交点坐标,根据图象即可解决问题.【题目详解】解:由图象可知,抛物线与x轴的交点坐标分别为(-3,0)和(1,0),
∴时,x的取值范围为.故选:A.【题目点拨】本题考查抛物线与x轴的交点,对称轴等知识,解题的关键是学会数形结合,根据图象确定自变量的取值范围,属于中考常考题型.4、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【题目详解】解:抛物线y=-x1的顶点坐标为(0,0),
先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),
所以,平移后的抛物线的解析式为y=-(x+1)1-1.
故选:B.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.5、C【解题分析】根据相似三角形三边对应成比例进行求解即可得.【题目详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【题目点拨】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.6、B【分析】用因式分解法求解即可得到结论.【题目详解】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:,.故选:B.【题目点拨】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.7、D【分析】A、连接PC,根据已知条件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得点B坐标,由A、B、O三点坐标,可求出抛物线的函数表达式;C、由射影定理及勾股定理可计算出点C坐标,将点C代入抛物线表达式即可判断;D、由A,O,C三点坐标可求得经过A,O,C三点的抛物线的函数表达式.【题目详解】解:如图所示,连接PC,∵圆P与AB相切于点C,所以PC⊥AB,又∵∠B=90º,所以△ACP∽△ABO,设OP=x,则OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半径为,故A选项错误;过B作BD⊥OA交OA于点D,∵∠B=90º,BD⊥OA,由勾股定理可得:,由面积相等可得:∴,∴由射影定理可得,∴∴,设经过A,O,B三点的抛物线的函数表达式为;将A(5,0),O(0,0),代入上式可得:解得,,c=0,经过A,O,B三点的抛物线的函数表达式为,故B选项错误;过点C作CE⊥OA交OA于点E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴点C坐标为,故选项C错误;设经过A,O,C三点的抛物线的函数表达式是,将A(5,0),O(0,0),代入得,解得:,∴经过A,O,C三点的抛物线的函数表达式是,故选项D正确.【题目点拨】本题考查相似三角形、二次函数、圆等几何知识,综合性较强,解题的关键是要能灵活运用相似三角形的性质计算.8、B【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【题目详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.故选B.【题目点拨】本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.9、C【分析】根据无理数的定义进行判断即可.【题目详解】A.,有理数;B.,有理数;C.,无理数;D.,有理数;故答案为:C.【题目点拨】本题考查了无理数的问题,掌握无理数的定义是解题的关键.10、D【解题分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【题目详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故选D.【题目点拨】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.11、B【分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ=,于是得到S2=()2>()2,即可得到结论.【题目详解】解:如图1,设正方形DEFG的边长是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,过B作BM⊥AC于M,交DE于N,由三角形面积公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的边长是;∴S1=()2,如图2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故选:B.【题目点拨】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键.12、B【解题分析】反比例函数图象上的点横坐标和纵坐标的积为k,把已知点坐标代入反比例解析式求出k的值,即可做出判断.【题目详解】解:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(-2,-3)在这个函数图象上,故选:B.【题目点拨】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.二、填空题(每题4分,共24分)13、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【题目详解】延长AE交DC延长线于M,
∵四边形ABCD是正方形,BC=3BE,BC=3,
∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,
∴△ABE∽△MCE,
∴,
∴CM=2AB=6,
即DM=3+6=9,
由勾股定理得:,
∵AF平分∠DAE,
∴,
∴,
解得:,
∵AF平分∠DAE,∠D=90°,
∴点F到AE的距离=,
故答案为:.【题目点拨】本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.14、a<1【分析】先求出抛物线的对称轴,再根据二次函数的增减性列出不等式,求解即可.【题目详解】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴﹣<,解得a<1.故答案为:a<1.【题目点拨】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.15、-1【分析】根据零指数幂及特殊角的三角函数值计算即可.【题目详解】解:原式=1-4×=-1,故答案为:-1.【题目点拨】本题考查了实数的运算、零指数幂、特殊角的三角函数值,属于基础题,解答本题的关键是熟练每部分的运算法则.16、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【题目详解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案为b(a+b)(a﹣b).17、1【解题分析】如图,设△ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC,设半径为r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1,∴△ABC的内切圆的半径为1,故答案为1.18、1【分析】根据根与系数的关系确定和,然后代入计算即可.【题目详解】解:∵∴=-3,=-5∴-3-(-5)=1故答案为1.【题目点拨】本题主要考查了根与系数的关系,牢记对于(a≠0),则有:,是解答本题的关键.三、解答题(共78分)19、(1);(2)【解题分析】(1)利用概率公式直接计算即可;(2)先画树状图展示所有9种等可能的结果数,再找出其中小明和小刚被分配到不同项目组的结果数,然后根据概率公式计算.【题目详解】解:(1)∵共有A,B,C三项赛事,∴小明被分配到“迷你健身跑”项目组的概率是,故答案为:;(2)画树状图为:共有9种等可能的结果数,其中小明和小刚被分配到不同项目组的结果数为6,所以小明和小刚被分配到不同项目组的概率.【题目点拨】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20、(1)200人;(2)图见解析;(3)75万人.【分析】(1)根据A组的人数和所占的百分比可以求得本次被调查的市民共有多少人;(2)根据统计图中的数据可以求得C组和D组的人数,计算出B组和D组所占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以计算出持有A、B两组主要成因的市民有多少人.【题目详解】解:(1)90÷45%=200(人),即本次被调查的市民共有200人;(2)C组有200×15%=30(人),D组有:200﹣90﹣60﹣30=20(人),B组所占的百分比为:×100%=30%,D组所占的百分比是:×100%=10%,补全的条形统计图和扇形统计图如右图所示;(3)100×(45%+30%)=75(万人),答:持有A、B两组主要成因的市民有75万人.【题目点拨】本题考查了扇形统计图和频数直方图,解决本题的关键是扇形统计图和频数直方图里的数据关系要相对应.21、(1)没有关系,∠CDF=∠CAB=60°;(2);(3)或【解题分析】(1)①根据同弧所对的圆周角解答即可;②利用锐角三角函数的定义求出AC与BC、DF与CF的关系,利用三角形的面积公式得出,然后根据正弦的定义可求出的正弦值;(2)分两种情况求解:①当D点在直径AB下方的圆弧上时;当D点在直径AB上方的圆弧上时.【题目详解】解:(1)①没有关系,理由如下:当D在直径AB的上方时,如下图,∵AB为直径,∴∠ACB=90°;∵∠ABC=30°,∴∠CAB=60°;∴∠CDF=∠CAB=60°;当D在直径AB的下方时,如下图∵∠CAB=60°,∴∠CDB=180°-∠CAB=120°,∴∠CDF=60°.②∵CF⊥BD,AB为直径;∴∠ACB=∠CFD=90°;由①得,∠CDF=∠CAB=60°,∴;;∵;;∴;∴(2)∵半径为2,,∴弧CD所对圆心角①当D点在直径AB下方的圆弧上时;如图,连结OD,过D作DE⊥AB于E;由(1)知,,∴;∴;OD=2,∴,,;∴;②当D点在直径AB上方的圆弧上时,如图,连结OD,过D作DF⊥AB于F;此时;∴,,;∴;综上所述:BD的长为或.【题目点拨】本题考查了圆周角定理的推论,锐角三角函数的定义,勾股定理及其逆定理的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.22、(1);(2);(3)【分析】(1)根据对称轴公式及点A坐标建立方程组求解即可;(2)根据直线表达式求出点E坐标,再联立直线与抛物线的表达式求交点C、D的坐标,利用坐标即可求出的面积;(3)根据点Q在抛物线上设出点Q坐标,再根据P、Q之间的关系表示出点P的坐标,然后利用平行四边形的性质得到BE=PQ,从而建立方程求解即可.【题目详解】解:(1)由题可得,解得,∴抛物线解析式为;(2)在中,令,得,∴,由,解得或,∴,∴;(3)在中,令,得,解得或,∴,∴BE=1,设,则,∵四边形为平行四边形,∴,∴,整理得:,解得:或,当时,点Q与点B重合,故舍去,∴.【题目点拨】本题为二次函数综合题,熟练掌握对称轴公式、待定系数法求表达式、交点坐标的求法以及平行四边形的性质是解题的关键.23、(1)甲,C(16,0),主索抛物线的表达式为;(2)四根吊索的总长度为13m;【分析】(1)利用待定系数法求取解析式即可;(2)利用抛物线对称性进一步求解即可.【题目详解】(1)甲,C(16,0)解:设抛物线的表达式为由题意可知,C点坐标为(16,0),P点坐标为(0,-8)将C(16,0),P(0,-8)代入,得解得.∴主索抛物线的表达式为(2)x=4时,,此时吊索的长度为m.由抛物线的对称性可得,x=-4时,此时吊索的长度也为m.同理,x=8时,,此时吊索的长度为mx=-8时,此时吊索的长度也为4m.∴四根吊索的总长度为13m【题目点拨】本题主要考查了抛物线解析式的求取与性质,熟练掌握相关概念是解题关键.24、(1)见解析(2),;公平【分析】(1)根据题意,列出树状图,即可得到答案;(2)根据概率公式,分别求出小亮和小丽获胜的概率,即可.【题目详解】(1)画树状图如下:两数和的所有可能结果为:2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8共16种.(2)∵两次数字
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产管理台帐范本
- 保险金融专题
- 以消防安全为主题的班会
- 完美的职业规划
- 沪科黔科版《综合实践活动》5上校园广播站 课件
- 一分钟励志题目演讲400字10篇
- 低年级教师教学经验演讲稿5篇
- 毕业生求职信范文集锦十篇
- 生物与环境课件
- 金融培训中心
- 【MOOC】全新版大学进阶英语综合教程II-内蒙古大学 中国大学慕课MOOC答案
- 印刷保密协议
- 辅导员年终汇报
- 中国当代文学专题-003-国开机考复习资料
- 2024年人教版初二历史上册期末考试卷(附答案)
- 预防校园欺凌主题班会课件(共36张课件)
- 智能机器人设计与实践智慧树知到答案2024年北京航空航天大学
- 支原体肺炎课件
- 求职能力展示
- 国培教师个人成长案例3000字
- 中国马克思主义与当代思考题(附答案)
评论
0/150
提交评论