




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的根与系数的关系
第二十一章一元二次方程知识回顾1.写出一元二次方程的一般式:ax2+bx+c=0(a≠0)3.如何用判别式b2-4ac来判断一元二次方程根的情况?对一元二次方程:ax2+bx+c=0(a≠0).b2-4ac>0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac<0时,方程无实数根.2.一元二次方程的求根公式:学习目标1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题.课堂导入方程ax2+bx+c=0(a≠0)的求根公式
,不仅表示可以由方程的系数a,b,c决定根的值,而且反映了根与系数之间的联系,一元二次方程根与系数之间的联系还有其他表现方式吗?新知探究从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根为x1和x2,将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?方程两个根的和、积与系数分别有如下关系:
x1+x2=-p,x1x2=q.新知探究一般的一元二次方程ax2+bx+c=0中,二次项系数a未必是1,它的两个根的和、积与系数又有怎样的关系呢?新知探究由求根公式知新知探究方程的两个根x1,x2和系数a,b,c有如下关系:这表明任何一个一元二次方程的根与系数的关系为:
两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.跟踪训练新知探究根据一元二次方程的根与系数的关系,求下列方程两个根x1,x2的和与积:(1)x2-6x-15=0;
(2)3x2+7x-9=0;(3)5x-1=4x2.(1)x1+x2=-(-6)=6x1x2=-15.知识点2新知探究与一元二次方程ax2+bx+c=0(a≠0)的两个根x1,x2有关的几个代数式的变形:知识点2新知探究求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和、两根之积的形式,再整体代入.新知探究
A跟踪训练跟踪训练新知探究
x2+5x+3=0已知x1,x2是方程x2+3x-1=0的两个根,求以x1-1和x2-1为根的一元二次方程.跟踪训练新知探究随堂练习不解方程,求下列方程两个根的和与积.(1)x2-3x=15;
(2)3x2+2=1-4x;(3)5x2-1=4x2+x;
(4)2x2-x+2=3x+1.
0已知关于x
的一元二次方程x2-6x+q=0有一个根为2,求方程的另一根和q的值.4q=2×4=8.课堂小结一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系数学语言文字语言一元二次方程的两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.使用条件1.方程是一元二次方程,即二次项系数不为0;2.方程有实数根,即Δ≥0.重要结论1.若一元二次方程x2+px+q=0的两根为x1,x2,则x1+x2=-p,x1x2=q.2.以实数x1,x2为两根的二次项系数为1的一元二次方程是
x2-(x1+x2)x+x1x2=0.关于x
的一元二次方程x2-(a2-2a)x+a-1=0的两个实数根互为相反数,则a
的值为()对接中考BA.2 B.0 C.1 D.2或0已知x1,x2是一元二次方程x2−2x=0的两个实数根,下列结论错误的是()D
一元二次方程的根与系数的关系
目录01教学目标02知识点框架03例题练习04作业布置教学目标01教学目标掌握一元二次方程根与系数的关系;能运用一元二次方程根与系数的关系由已知一元二次方程的一个根求出另一个根与未知系数;会求一元二次方程两根的倒数和与平方数、两根之差.知识点框架02课程回顾1.解一元二次方程有哪些方法?直接开平方法、配方法、公式法、因式分解法.2.一元二次方程的一般形式是什么?3.一元二次方程的求根公式是什么?4.判别式与一元二次方程根的情况:是一元二次方程的根的判别式,设,则(1)当时,原方程有两个不相等的实数根;(2)当时,原方程有两个相等的实数根;(3)当时,原方程没有实数根.知识点框架一元二次方程的根与系数的关系(韦达定理)概念:如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么
,此定理又叫做韦达定理.注意:不是一般式的要先化成一般式在使用时,注意“”不要漏写“-”号;几种常见的求值:1.2.3.4.5.6.例题练习03例题例1.不解方程,求方程3x2+2=1﹣4x两根的和与积.例2.关于x的方程x2﹣px+q=0的两个根是0和﹣3,求p和q的值.例3.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为
.例4.方程2x2+3x﹣5=0的两根的符号()A.同号B.异号C.两根都为正D.两根都为负练习1.方程2x2﹣6x﹣5=0的两根为x1与x2,则x1+x2和x1x2的值分别是()A.﹣3和﹣B.﹣3和C.3和D.3和-2.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10B.10C.﹣6D.23.已知2﹣是一元二次方程x2﹣4x﹣c=0的一个根,求另一个根及c的值.4.方程ax2+bx﹣c=0(a>0、b>0、c>0)的两个根的符号为()A.同号B.异号C.两根都为正D.不能确定练习5.已知关于x的方程x2﹣4x+2=0的两个根是m和n,则mn=
,m+n=
.6.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2+7x﹣12=0D.x2﹣7x﹣12=07.已知x=2是方程x2﹣6x+m=0的根,则该方程的另一根为()A.2B.3C.4D.88.已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.作业布置04作业布置1.一元二次方程2x2﹣3x﹣5=0的两个实数根分别为x1、x2,则x1+x2的值为()A.B.-C.D.-2.关于方程式49x2﹣98x﹣1=0的解,下列叙述何者正确()A.无解 B.有两正根C.有两负根 D.有一正根及一负根3.一元二次方程x2+px=2的两根为x1,x2,且x1=﹣2x2,则p的值为()A.2B.1C.1或﹣1D.﹣14.设x1,x2是一元二次方程x2+5x﹣3=0的两根,且2x1(x22+6x2﹣3)+a=4,则a=______.作业布置5.设α,β是一元二次方程x2+3x﹣7=0的两个根,则α2+4α+β=______.6.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程______.7.若方程x2﹣kx+6=0的两根分别比方程x2+kx+6=0的两根大5,则k的值是______.8.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2的值为
.9.已知方程x2+mx+3=0的一个根是1,则它的另一个根是
,m的值是
.作业布置10.已知方程x2﹣kx﹣6=0的一个根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论