




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西南宁八中学数学九上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.的倒数是()A. B. C. D.2.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A. B. C. D.3.在中,,,,那么的值等于()A. B. C. D.4.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.85.如图,已知在△ABC纸板中,AC=4,BC=8,AB=11,P是BC上一点,沿过点P的直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么CP长的取值范围是()A.0<CP≤1 B.0<CP≤2 C.1≤CP<8 D.2≤CP<86.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A′在AB上,则旋转角的度数是()A.30° B.45° C.60° D.90°7.如图,在□ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则□ABCD的面积为A.6 B.12 C.12 D.168.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O'A'B',A的对应点A'是直线上一点,则点B与其对应点B'间的距离为()A.3 B.4 C.5 D.69.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.10.如图,在平面直角坐标系中,以为圆心作⊙,⊙与轴交于、,与轴交于点,为⊙上不同于、的任意一点,连接、,过点分别作于,于.设点的横坐标为,.当点在⊙上顺时针从点运动到点的过程中,下列图象中能表示与的函数关系的部分图象是()A. B. C. D.11.如图,是正方形的外接圆,点是上的一点,则的度数是()A. B.C. D.12.在中,是边上的点,,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.14.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.15.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.16.把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为______.17.将抛物线向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为_________________.18.方程的解为_____.三、解答题(共78分)19.(8分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?20.(8分)一个不透明的布袋中装有4个只有颜色不同的球,其中1个黄球、1个蓝球、2个红球.(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);(2)现再将n个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为,求n的值.21.(8分)已知二次函数(k是常数)(1)求此函数的顶点坐标.(2)当时,随的增大而减小,求的取值范围.(3)当时,该函数有最大值,求的值.22.(10分)如图,在一条河流的两岸分别有A、B、C、D四棵景观树,已知AB//CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度(参考数值:,,)23.(10分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式24.(10分)如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.25.(12分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.26.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
参考答案一、选择题(每题4分,共48分)1、A【分析】根据乘积为1的两个数互为倒数进行解答即可.【题目详解】解:∵×1=1,∴的倒数是1.故选A.【题目点拨】本题考查了倒数的概念,熟记倒数的概念是解答此题的关键.2、C【分析】直接利用概率公式求解即可求得答案.【题目详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:.故选:C.【题目点拨】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3、A【解题分析】在直角三角形中,锐角的正切等于对边比邻边,由此可得.【题目详解】解:如图,.故选:A.【题目点拨】本题主要考查了锐角三角函数中的正切,熟练掌握正切的表示是解题的关键.4、D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【题目详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【题目点拨】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.5、B【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【题目详解】如图所示,过P作PD∥AB交AC于D或PE∥AC交AB于E,则△PCD∽△BCA或△BPE∽△BCA,此时0<PC<8;如图所示,过P作∠BPF=∠A交AB于F,则△BPF∽△BAC,此时0<PC<8;如图所示,过P作∠CPG=∠B交AC于G,则△CPG∽△CAB,此时,△CPG∽△CBA,当点G与点A重合时,CA1=CP×CB,即41=CP×8,∴CP=1,∴此时,0<CP≤1;综上所述,CP长的取值范围是0<CP≤1.故选B.【题目点拨】本题主要考查了相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.6、C【分析】根据旋转的性质得出AO=A′O,得出等边三角形AOA′,根据等边三角形的性质推出即可.【题目详解】解:∵∠AOB=90°,∠B=30°,∴∠A=60°,∵△A′OB′可以看作是△AOB绕点O顺时针旋转α角度得到的,点A′在AB上,
∴AO=A′O,∴△AOA′是等边三角形,
∴∠AOA′=60°,
即旋转角α的度数是60°,
故选:C【题目点拨】本题考查了等边三角形的性质和判定,旋转的性质等知识点,关键是得出△AOA′是等边三角形,题目比较典型,难度不大.7、D【分析】利用三角函数的定义求出AC,再求出△ABC的面积,故可得到□ABCD的面积.【题目详解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面积=2S△ABC=16故选D.【题目点拨】此题主要考查三角函数的应用,解题的关键是熟知正切的定义及平行四边形的性质.8、C【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【题目详解】解:如图,连接AA′、BB′,∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4,又∵点A的对应点在直线y=x上一点,∴4=x,解得x=1,∴点A′的坐标是(1,4),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故选:C.【题目点拨】本题考查了一次函数图象上点的坐标特征、坐标与图形变化−−平移.根据平移的性质得到BB′=AA′是解题的关键.9、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【题目详解】解:作OP⊥a于P点,则OP=1.
根据题意,在Rt△OPA中,AP==故选:B.【题目点拨】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.10、A【分析】由题意,连接PC、EF,利用勾股定理求出,然后得到AB的长度,由垂径定理可得,点E是AQ中点,点F是BQ的中点,则EF是△QAB的中位线,即为定值,由,即可得到答案.【题目详解】解:如图,连接PC,EF,则∵点P为(3,0),点C为(0,2),∴,∴半径,∴;∵于,于,∴点E是AQ中点,点F是BQ的中点,∴EF是△QAB的中位线,∴为定值;∵AB为直径,则∠AQB=90°,∴四边形PFQE是矩形,∴,为定值;∴当点在⊙上顺时针从点运动到点的过程中,y的值不变;故选:A.【题目点拨】本题考查了圆的性质,垂径定理,矩形的判定和性质,勾股定理,以及三角形的中位线定理,正确作出辅助线,根据所学性质进行求解,正确找到是解题的关键.11、C【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.【题目详解】解:连接OB,OA,∵⊙O是正方形ABCD的外接圆,∴∠BOA=90°,∴=∠BOA=45°.故选:C.【题目点拨】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.12、C【分析】先利用比例性质得到AD:AB=3:4,再证明△ADE∽△ABC,然后利用相似比可计算出AC的长.【题目详解】解:解:∵AD=9,BD=3,
∴AD:AB=9:12=3:4,
∵DE∥BC,
∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故选C.【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用相似三角形的性质时主要利用相似比计算线段的长.二、填空题(每题4分,共24分)13、【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【题目详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,
边长为30cm的正方形ABCD的面积=302=900cm2,
∴P(飞镖落在圆内)=,故答案为:.【题目点拨】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.14、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【题目详解】解:因为点D(4,1)在边AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为8,到y轴的距离为3,
所以D′(3,8),∴;
故答案为:3或.【题目点拨】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.15、x1=1,x2=﹣1.【分析】先阅读题目,根据新运算得出(x+2)2﹣9=0,移项后开方,即可求出方程的解.【题目详解】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣1,故答案为x1=1,x2=﹣1.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是根据题意列方程.16、【分析】根据概率的定义求解即可【题目详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张∴概率为故本题答案为:【题目点拨】本题考查了随机事件的概率17、.【解题分析】∵将抛物线向左平移2个单位,再向上平移1个单位,∴抛物线的顶点(0,0)也同样向左平移2个单位,再向上平移1个单位,得到新抛物线的的顶点(-2,1).∴平移后得到的抛物线的解析式为.18、,【分析】因式分解法即可求解.【题目详解】解:x(2x-5)=0,,【题目点拨】本题考查了用提公因式法求解一元二次方程的解,属于简单题,熟悉解题方法是解题关键.三、解答题(共78分)19、(1)y=100x(的整数)y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【题目详解】(1)当的整数时,y与x的关系式为y=100x;当的整数时,,y=(的整数),∴y与x的关系式为:y=100x(的整数),y=x(的整数)(2)当(的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=,∵a=-3<0,抛物线开口向下,∴y有最大值,当x=时,y取最大值,因为x为整数,根据对称性得:当x=22时,y有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【题目点拨】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x的取值范围及取值要求是解答此题的关键之处.20、(1);(2)1.【解题分析】(1)先利用树状图展示所有12种等可能的结果数,再找出两次摸出的球恰好都是红球的所占的结果数,然后根据概率公式求解;(2)根据概率公式得到,然后利用比例性质得,求解即可.【题目详解】解:(1)画树状图为:共有12种等可能的结果,其中两次摸出的球恰好都是红球的占2种,所以两次摸出的球恰好都是红球的概率==;(2)根据题意得,解得n=1.【题目点拨】本题考查的是概率问题,熟练掌握树状图法和概率公式是解题的关键.21、(1);(2);(3)或【分析】(1)先求出顶点横坐标,然后代入解析式求出顶点纵坐标即可;(2)根据二次函数的增减性列式解答即可;(3)分三种情况求解:①当k>1时,当k<0时,当时.【题目详解】解:(1)对称轴为:,代入函数得:,∴顶点坐标为:;(2)∵对称轴为:x=k,二次函数二次项系数小于零,开口向下;∴当时,y随x增大而减小;∵当时,y随x增大而减小;∴(3)①当k>1时,在中,y随x增大而增大;∴当x=1时,y取最大值,最大值为:;∴k=3;②当k<0时,在中,y随x增大而减小;∴当x=0时,y取最大值,最大值为:;∴;∴;③当时,在中,y随x先增大再减小;∴当x=k时,y取最大值,最大值为:;∴;解得:k=2或-1,均不满足范围,舍去;综上所述:k的值为-2或3.【题目点拨】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.22、m【分析】分别过C,D作CF⊥AE于F,DG⊥AE于F,构建直角三角形解答即可.【题目详解】分别过C,D作CF⊥AE于F,DG⊥AE于F,
∴∠AGD=∠BFC=90°,
∵AB∥CD,
∴∠FCD=90°,
∴四边形CFGD是矩形,
∴CD=FG=30m,CF=DG,
在直角三角形ADG中,∠DAG=45°,
∴AG=DG,
在直角三角形BCF中,∠FBC=73°,
∴,
∴,
∵AG=AB+BF+FG=DG,
即10+BF+30=,
解得:BF=m,则,
答:这条河的宽度为m.【题目点拨】本题考查解直角三角形的应用,要求学生能借助辅助线构造直角三角形并解直角三角形.23、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.【分析】(1)将二次函数的一般式转化为顶点式,即可求出结论;(2)根据抛物线的开口方向和对称轴左右两侧的增减性即可得出结论;(3)根据抛物线的平移规律:括号内左加右减,括号外上加下减,即可得出结论.【题目详解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴当x=3时,y有最小值,最小值是-5;(2)∵2>0,对称轴为x=3∴抛物线的开口向上∴当x<3时,y随x的增大而减小;(3)∵将该抛物线向右平移2个单位,再向上平移2个单位,∴平移后的解析式为:y=2(x-3-2)2-5+2=2(x-5)2-3即新抛物线的表达式为y=2x2-20x+47【题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业文化对市场影响的分析试题及答案
- 全面掌握:人力资源管理师考试试题及答案
- 第17课 彩虹的形成(教学设计)五年级科学上册同步高效课堂系列(冀人版)
- 教师资格证考试常识试题及答案
- 黑龙江省七台河市2025年初三下学期3月练习卷物理试题试卷含解析
- 黑龙江省佳木斯市建三江一中2025年高三下学期防疫期间“停课不停学”网上周考(二)化学试题含解析
- 黑龙江省双鸭山市第三十一中学2024-2025学年高考数学试题冲刺试题含解析
- 黑龙江省哈尔滨市实验中学2024-2025学年高三英语试题模拟试题含解析
- 黑龙江省哈尔滨市高中名校2025年高三3月份第一次模拟考试物理试题试卷含解析
- 黑龙江省大庆市一中2024-2025学年高三阶段性测试(二)数学试题B卷含解析
- 2025年湖南省长沙市开福区审计局招聘4人历年高频重点模拟试卷提升(共500题附带答案详解)
- 人教PEP版英语五年级下册全册教案
- 基础护理学试题及标准答案
- 2025年四川成都市蒲江乡村建设发展集团有限公司招聘笔试参考题库附带答案详解
- 2024版房产经纪人无底薪劳动协议
- 2025年上半年度交通运输部南海航海保障中心公开招聘126人工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 社戒社康培训
- 招聘团队管理
- 船舶建造流程
- 低氧血症护理查房
- 小学一年级数学20以内的口算题(可直接打印A4)
评论
0/150
提交评论