2024届广西南宁中学春季学期九年级数学第一学期期末教学质量检测试题含解析_第1页
2024届广西南宁中学春季学期九年级数学第一学期期末教学质量检测试题含解析_第2页
2024届广西南宁中学春季学期九年级数学第一学期期末教学质量检测试题含解析_第3页
2024届广西南宁中学春季学期九年级数学第一学期期末教学质量检测试题含解析_第4页
2024届广西南宁中学春季学期九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西南宁中学春季学期九年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是()①;②;③;④A.1 B.2 C.3 D.42.若是方程的两根,则的值是()A. B. C. D.3.已知△ABC与△DEF相似且对应周长的比为4:9,则△ABC与△DEF的面积比为A.2:3 B.16:81C.9:4 D.4:94.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.20175.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3) B.若x>1,则﹣3<y<0C.图象在第二、四象限内 D.y随x的增大而增大6.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且7.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°8.下列图形中为中心对称图形的是()A.等边三角形 B.平行四边形 C.抛物线 D.五角星9.如图,经过原点的⊙与轴分别交于两点,点是劣弧上一点,则()A.是锐角 B.是直角 C.是钝角 D.大小无法确定10.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.12.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=__________.13.如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,,则________.14.如图,已知,,,若,,则四边形的面积为______.15.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,求选取点A为坐标原点时的抛物线解析式是_______.16.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形的边长是x步,则列出的方程是_______________.17.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.18.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的黄、白两种颜色的乒乓球若干只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601现从这个口袋中摸出一球,恰好是黄球的概率为_____.三、解答题(共66分)19.(10分)如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点(1)求证:;(2)若,,求的度数.20.(6分)已知在平面直角坐标系xOy中,抛物线(b为常数)的对称轴是直线x=1.(1)求该抛物线的表达式;(2)点A(8,m)在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.21.(6分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.22.(8分)下面是一位同学做的一道作图题:已知线段、、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段______就是所求的线段.(1)试将结论补完整:线段______就是所求的线段.(2)这位同学作图的依据是______;(3)如果,,,试用向量表示向量.23.(8分)先阅读,再填空解题:(1)方程:的根是:________,________,则________,________.(2)方程的根是:________,________,则________,________.(3)方程的根是:________,________,则________,________.(4)如果关于的一元二次方程(且、、为常数)的两根为,,根据以上(1)(2)(3)你能否猜出:,与系数、、有什么关系?请写出来你的猜想并说明理由.24.(8分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.25.(10分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.26.(10分)如图,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG;(3)若正方形ABCD的的边长为2,G为BC的中点,求EF的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【题目详解】∵AB⊥CD,∴,CE=DE,②正确,∴∠BOC=2∠BAD=40°,③正确,∴∠OCE=90°−40°=50°,④正确;又,故①错误;故选:C.【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.2、D【解题分析】试题分析:x1+x2=-=6,故选D考点:根与系数的关系3、B【解题分析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【题目详解】解:∵△ABC与△DEF相似且对应周长的比为4:9,∴△ABC与△DEF的相似比为4:9,∴△ABC与△DEF的面积比为16:81.故选B【题目点拨】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方.4、C【题目详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.5、D【解题分析】A.

∵(−1)×3=−3,∴图象必经过点(−1,3),故正确;B.

∵k=−3<0,∴函数图象的两个分支分布在第二、四象限,故正确;C.

∵x=1时,y=−3且y随x的增大而而增大,∴x>1时,−3<y<0,故正确;D.函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故错误.故选D.6、D【解题分析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.7、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【题目详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,

∴AF=BF,,∠DBC=90°,

∴B、C、D正确;

∵点F不一定是OC的中点,

∴A错误.故选:A.【题目点拨】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8、B【分析】根据中心对称图形的概念求解.【题目详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误.故选:B.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、B【分析】根据圆周角定理的推论即可得出答案.【题目详解】∵和对应着同一段弧,∴,∴是直角.故选:B.【题目点拨】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.10、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【题目详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【题目点拨】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.二、填空题(每小题3分,共24分)11、1【分析】由旋转的性质可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【题目详解】∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案为:1.【题目点拨】本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键.12、50°.【题目详解】解:∵∠A=70°,∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为50°.考点:圆内接四边形的性质.13、5【分析】由矩形的性质可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长.【题目详解】解:∵四边形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵将△BCE沿BE折叠为△BFE,在Rt△ABF中,AF==6∴DF=AD-AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8-CE)2=CE2,∴CE=5故答案为:5【题目点拨】本题考查了矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键.14、1【分析】过点D作DE⊥AC于E,利用AAS证出ABC≌DAE,从而得出BC=AE,AC=DE,∠BAC=∠ADE,根据锐角三角函数可得,设BC=AE=x,则AC=DE=4x,从而求出CE,利用勾股定理列出方程即可求出x的值,从而求出BC、AC和DE,再根据四边形的面积=即可求出结论.【题目详解】解:过点D作DE⊥AC于E∴∠EAD+∠ADE=90°∵∴∠BAC+∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,∴ABC≌DAE∴BC=AE,AC=DE,∠BAC=∠ADE∴∴设BC=AE=x,则AC=DE=4x∴EC=AC-AE=3x在RtCDE中,CE2+DE2=CD2即(3x)2+(4x)2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形的面积==BC·AC+AC·DE=×1×4+×4×4=1故答案为:1.【题目点拨】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.15、【分析】以A为坐标原点建立坐标系,求出其它两点的坐标,用待定系数法求解析式即可.【题目详解】解:以A为原点建立坐标系,则A(0,0),B(12,0),C(6,4)设y=a(x-h)2+k,∵C为顶点,∴y=a(x-6)2+4,把A(0,0)代入上式,36a+4=0,解得:,∴;故答案为:.【题目点拨】本题主要考查了待定系数法求二次函数解析式,恰当的选取坐标原点,求出各点的坐标是解决问题的关键.16、【分析】根据圆的面积-正方形的面积=可耕地的面积即可解答.【题目详解】解:∵正方形的边长是x步,圆的半径为()步∴列方程得:.故答案为.【题目点拨】本题考查圆的面积计算公式,解题关键是找出等量关系.17、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【题目详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【题目点拨】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.18、0.1【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出黄球的概率.【题目详解】解:观察表格得:通过多次摸球实验后发现其中摸到黄球的频率稳定在0.1左右,则P黄球=0.1.故答案为:0.1.【题目点拨】本题考查了利用频率估计概率:通过大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性可以根据频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率三、解答题(共66分)19、(1)证明见解析;(2)78°.【分析】(1)因为,所以有,又因为,所以有,得到;(2)利用等腰三角形ABE内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到,从而算出∠FGC【题目详解】(1)(2)【题目点拨】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键20、(1);(2)(-6,49);(3)答案见解析.【分析】(1)由对称轴为,即可求出b的值,然后代入即可;(2)把代入解析式,求出m,利用抛物线的对称轴性质,即可得到点坐标;(3)选取对称轴左右两边的几个整数,计算出函数值,然后画出抛物线即可.【题目详解】解:(1)∵对称轴为,∴.∴;∴抛物线的表达式为.(2)∵点A(8,m)在该抛物线的图像上,∴当x=8时,.∴点A(8,49).∴点A(8,49)关于对称轴对称的点A'的坐标为(-6,49).(3)列表,如下:抛物线图像如下图:【题目点拨】本题考查了二次函数的性质和图像,解题的关键是熟练掌握二次函数的性质和图像的画法.21、12.1m.【分析】首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BE-AE可求出答案.【题目详解】解:作DG⊥AE于G,则∠BDG=α,易知四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×=15m,∴BE=15+1.6=16.6m.∵斜坡FC的坡比为iFC=1:10,CE=35m,∴EF=35×=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE-AE=16.6-4.5=12.1m.答:旗杆AB的高度为12.1m.【题目点拨】本题考查解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.22、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)【分析】(1)根据作图依据平行线分线段成比例定理求解可得;

(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;

(3)先证△OAC∽△OBD得,即,从而知,又,与反向可得出结果.【题目详解】解:(1)根据作图知,线段CD就是所求的线段x,

故答案为:CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(3),∴△OAC∽△OBD,.,,.得.,,与反向,.【题目点拨】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.23、(1)-2,1,-1,2;(2)3,,,;(3)5,-1,4,-5;(4),,理由见解析【分析】(1)利用十字相乘法求出方程的解,即可得到答案;(2)利用十字相乘法求出方程的解,即可得到答案;(3)利用十字相乘法求出方程的解,即可得到答案;(4)利用公式法求出方程的解,即可得到答案.【题目详解】(1)∵,∴(x+2)(x-1)=0,∴,,∴,;故答案为:-2,1,-1,2;(2)∵,∴(x-3)(2x-1)=0,∴,,∴,,故答案为:3,,,;(3)∵,∴(x-5)(x+1)=0,∴,,∴,,故答案为:5,-1,4,-5;(4),与系数、、的关系是:,,理由是有两根为,,∴,.【题目点拨】此题考查解一元二次方程,一元二次方程根与系数的关系,根据方程的特点选择适合的解法是解题的关键.24、(1);(2);(3)【分析】(1)三面涂有颜色的小正方体是在8个顶点处,共8个,再根据概率公式解答即可;

(2)两面涂有颜色的小正方体是在12条棱的中间处,共24个,再根据概率公式解答即可;

(3)各个面都没有颜色的小正方体是在6个面的中间处,共8个,再根据概率公式解答即可.【题目详解】解:(1)因为三面涂有颜色的小正方体有8个,所以P(三面涂有颜色)=;(2)因为两面涂有颜色的小正方体有24个,所以P(两面涂有颜色)=;(3)因为各个面都没有涂颜色的小正方体共有8个,所以P(各个面都没有涂颜色)=.【题目点拨】本题考查几何概率,等可能事件的概率=所求情况数与总情况数之比.关键是找到相应的具体数目.25、(1)见解析;(2)【分析】(1)由题意可得出,继而可证明△BPQ∽△BAC,从而证明结论;(2)由题意得出QP`⊥AC,分三种情况利用相似三角形的判定及性质讨论计算.【题目详解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC当0<t≤时,S=t2当<t≤1时:设QP`交AC于点MP`B`交AC于点N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论