版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省株洲湘渌实验学校数学九年级第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为()A.50° B.80° C.100° D.110°3.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()A. B. C. D.4.已知=3,=5,且与的方向相反,用表示向量为()A. B. C. D.5.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个6.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.7.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条 B.2条 C.3条 D.4条8.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)29.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是()A.2(1+x)2=2.88 B.2x2=2.88 C.2(1+x%)2=2.88 D.2(1+x)+2(1+x)2=2.8810.下列二次根式能与合并的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.12.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于.13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.15.若有一组数据为8、4、5、2、1,则这组数据的中位数为__________.16.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.17.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.18.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).三、解答题(共66分)19.(10分)(1)计算:(2)解不等式:20.(6分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(6分)用适当的方法解下列一元二次方程:(1)x2+4x﹣2=0;(2)(x+2)2=3(x+2).22.(8分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?23.(8分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).24.(8分)如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.25.(10分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?26.(10分)如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的)右侧),与y轴相交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)判断△BCM是否为直角三角形,并说明理由.(3)抛物线上是否存在点N(不与点C重合),使得以点A,B,N为顶点的三角形的面积与S△ABC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【题目详解】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.2、C【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【题目详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【题目点拨】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.3、C【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【题目详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【题目点拨】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.4、D【分析】根据=3,=5,且与的方向相反,即可用表示向量.【题目详解】=3,=5,=,与的方向相反,故选D.【题目点拨】考查了平面向量的知识,注意平面向量的正负表示的是方向.5、B【解题分析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.6、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【题目详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、C【分析】利用平行四边形的性质分割平行四边形即可.【题目详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:1.【题目点拨】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.8、C【解题分析】按照“左加右减,上加下减”的规律,从而选出答案.【题目详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【题目点拨】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.9、A【分析】设该市旅游收入的年平均增长率为x,根据该市2018年旅游收入及2020年旅游预计收入,即可得出关于x的一元二次方程,即可得出结论.【题目详解】设该市旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88故选A.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、C【分析】化为最简二次根式,然后根据同类二次根式的定义解答.【题目详解】解:的被开方数是3,而=、=2、是最简二次根式,不能再化简,以上三数的被开方数分别是2、2、15,所以它们不是同类二次根式,不能合并,即选项A、B、D都不符合题意,=2的被开方数是3,与是同类二次根式,能合并,即选项C符合题意.故选:C.【题目点拨】本题考查同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.二、填空题(每小题3分,共24分)11、【分析】根据旋转的性质可知△ACC1为等边三角形,进而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的长,利用线段的和差即可得出结论.【题目详解】根据旋转的性质可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1为等边三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中点,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案为:2.【题目点拨】本题考查了旋转的性质以及直角三角形的性质,得出△ADC1是含20°的直角三角形是解答本题的关键.12、【解题分析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.第n个等边三角形的周长等于.13、【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【题目详解】抬头看信号灯时,是绿灯的概率为.故答案为.【题目点拨】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.14、【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为4.【题目详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+1.∴当x=4时,BD取得最小值为4.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为4.故答案为:4.【题目点拨】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.15、4【分析】根据中位数的定义求解即可.【题目详解】解:将数据8、4、5、2、1按从小到大的顺序排列为:1、2、4、5、8,所以这组数据的中位数为4.故答案为:4.【题目点拨】本题考查了中位数的定义,属于基本题型,解题的关键是熟知中位数的概念.16、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【题目详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【题目点拨】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.17、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【题目详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【题目点拨】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.18、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【题目详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴故答案为:=.【题目点拨】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.三、解答题(共66分)19、(1)4;(2).【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【题目详解】(1)原式=4;(2),,,.【题目点拨】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.20、这棵树CD的高度为8.7米【解题分析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用21、(1)x=﹣2±;(2)x=﹣2或x=1【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【题目详解】解:(1)∵x2+4x﹣2=0,∴x2+4x+4=6,∴(x+2)2=6,∴x=﹣2±.(2)∵(x+2)2=3(x+2),∴(x+2)(x+2﹣3)=0,∴x=﹣2或x=1.【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.22、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w(单位:元)与售价x(单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题;(3)根据(1)中的关系式化为顶点式即可解答本题.【题目详解】解:(1)①由题意可得:y=500﹣(x﹣50)×10=﹣10x+1000;②w=(x﹣40)[﹣10x+1000]=﹣10x2+1400x﹣40000;(2)设销售单价为a元,,解得,a=80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∴当x=70时,y取得最大值,此时y=9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【题目点拨】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.23、见解析【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个等腰三角形,俯视图为两个同心圆(中间有圆心).【题目详解】解:三视图如图所示:【题目点拨】本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24、(1)详见解析;(2)AC=9,CD=.【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能化窗户安装与维护安全协议书4篇
- 2025年度灾害预防慈善捐赠执行合同范本4篇
- 二零二五版旅行社环保旅游推广合作框架协议3篇
- 二零二五年度橱柜安装及家居安全检测合同4篇
- 工业互联网平台核心技术与创新发展方案
- 2025年度个人绿色消费贷款展期服务合同4篇
- 小学数学课堂中的合作学习与互动实践
- 职场安全教育如何保护老年员工的财产安全
- 二零二五年度房地产项目采购人员廉洁行为规范3篇
- 2025年度个人吊车租赁合同争议解决及仲裁协议2篇
- 《县域肿瘤防治中心评估标准》
- 做好八件事快乐过寒假-2024-2025学年上学期中学寒假家长会课件-2024-2025学年高中主题班会课件
- 人员密集场所消防安全培训
- 液晶高压芯片去保护方法
- 使用AVF血液透析患者的护理查房
- 拜太岁科仪文档
- 2021年高考山东卷化学试题(含答案解析)
- 2020新译林版高中英语选择性必修一重点短语归纳小结
- GB/T 19668.7-2022信息技术服务监理第7部分:监理工作量度量要求
- 品管圈活动提高氧气雾化吸入注意事项知晓率
- 连续铸轧机的工作原理及各主要参数
评论
0/150
提交评论