版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市闵行区信宏中学2024届数学九年级第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24 B.33 C.56 D.422.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.若A(﹣3,y1),,C(2,y3)在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3 B.y1<y3<y2 C.y1<y2<y3 D.y3<y2<y14.对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.与x轴有两个交点 D.顶点坐标是(1,2)5.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+36.如图,在ABCD中,E为CD上一点,已知S△DEF:S△ABF=4:25,则DE:EC为()A.4:5 B.4:25 C.2:3 D.3:27.一元二次方程的二次项系数、一次项系数和常数项分别是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-18.下列计算正确的是()A.; B.; C.; D..9.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.10.在△ABC中,∠A、∠B都是锐角,且,则关于△ABC的形状的说法错误的是()A.它不是直角三角形 B.它是钝角三角形C.它是锐角三角形 D.它是等腰三角形11.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.12.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.二、填空题(每题4分,共24分)13.如图,在中,,,,则的长为_____.14.如图,在半径为5的中,弦,,垂足为点,则的长为__________.15.在Rt△ABC中,∠C=90°,如果AC=9,cosA=,那么AB=________.16.如图是二次函数y=ax2+bx+c的部分图象,由图象可知方程ax2+bx+c=0的解是_________.17.如图,⊙O是△ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E.写出图中所有与△ADE相似的三角形:___________.18.若A(-2,a),B(1,b),C(2,c)为二次函数的图象上的三点,则a,b,c的大小关系是__________________.(用“<”连接)三、解答题(共78分)19.(8分)已知线段AC(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.20.(8分)如图,在平面直角坐标系中,点P(﹣1,m)是双曲线y=上的一个点,过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1.(1)求m的值和双曲线对应的函数表达式;(2)若经过点P的一次函数y=kx+b(k≠0、b≠0)的图象与x轴交于点A,与y交于点B且PB=2AB,求k的值.21.(8分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)22.(10分)如图,为的直径,、为上两点,,,垂足为.直线交的延长线于点,连接.(1)判断与的位置关系,并说明理由;(2)求证:.23.(10分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点P从点A出发,沿AB边以2cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1cm/s的速度向点C匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)当PQ∥AC时,求t的值;(2)当t为何值时,△PBQ的面积等于cm2.24.(10分)文物探测队探测出某建筑物下面埋有文物,为了准确测出文物所在的深度,他们在文物上方建筑物的一侧地面上相距米的两处,用仪器测文物,探测线与地面的夹角分别是和,求该文物所在位置的深度(精确到米).25.(12分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?26.解一元二次方程(1)(2)
参考答案一、选择题(每题4分,共48分)1、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【题目详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【题目点拨】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.2、B【解题分析】试题分析:A.“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C.“概率为0.0001的事件”是随机事件,选项错误;D.任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.考点:随机事件.3、A【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【题目详解】解:对称轴为直线x=﹣=﹣1,∵a=1>0,∴x<﹣1时,y随x的增大而减小,x>﹣1时,y随x的增大而增大,∴y2<y1<y1.故选:A.【题目点拨】本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解是解题的关键.4、D【分析】根据题意从y=2(x﹣1)2+2均可以直接确定函数的开口方向、对称轴、顶点坐标等.【题目详解】解:y=2(x﹣1)2+2,(1)函数的对称轴为x=1;(2)a=2>0,故函数开口向上;(3)函数顶点坐标为(1,2),开口向上,故函数与x轴没有交点;故选:D.【题目点拨】本题考查的是二次函数的开口方向与x轴的交点,以及函数顶点坐标等基本性质,是函数的基础题注意掌握.5、D【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【题目详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【题目点拨】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.6、C【分析】根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.【题目详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:DC=2:5,∴DE:EC=2:1.故选C.【题目点拨】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7、D【解题分析】根据一元二次方程一般式的系数概念,即可得到答案.【题目详解】一元二次方程的二次项系数、一次项系数和常数项分别是:3,-2,-1,故选D.【题目点拨】本题主要考查一元二次方程一般式的系数概念,掌握一元二次方程一般式的系数,是解题的关键.8、B【解题分析】分析:分别根据次根式的加减运算法则以及合并同类项的法则、幂的乘方与积的乘方法则及同底数幂的除法法则对各选项进行逐一判断即可.详解:A.与不是同类项,不能合并,故本选项错误;B.,故本选项正确;C.,故本选项错误;D.,故本选项错误.故选:B.点睛:此题考查了二次根式的加减运算以及合并同类项、积的乘方运算和同底数幂的除法法则运算等知识,正确掌握运算法则是解题的关键.9、D【分析】根据空白区域的面积矩形空地的面积可得.【题目详解】设花带的宽度为,则可列方程为,故选D.【题目点拨】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.10、C【解题分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【题目详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°−∠A−∠B=180−30°−30°=120°.故选C.【题目点拨】本题主要考查特殊角三角函数值,熟悉掌握是关键.11、B【解题分析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【题目详解】解:A:,化简后是:,不符合一元二次方程的定义,所以不是一元二次方程;
B:x2=0,是一元二次方程;
C:x2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;
D:,分母含有未知数,是一元一次方程,所以不是一元二次方程;
故选:B.【题目点拨】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12、C【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【题目详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.二、填空题(每题4分,共24分)13、【解题分析】过A作AD垂直于BC,在直角三角形ABD中,利用锐角三角函数定义求出AD的长,在直角三角形ACD中,利用锐角三角函数定义求出CD的长,再利用勾股定理求出AC的长即可.【题目详解】解:过作,在中,,,∴,在中,,∴,即,根据勾股定理得:,故答案为【题目点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.14、4【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【题目详解】连接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案为:4.【题目点拨】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.15、27【解题分析】试题解析:解得:故答案为16、,【题目详解】解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是-1.
所以,.
故答案是:,.【题目点拨】考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.17、,【分析】根据两角对应相等的两个三角形相似即可判断.【题目详解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【题目点拨】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、a<b<c【分析】先求出二次函数的对称轴,再根据点到对称轴的距离远近即可解答.【题目详解】由二次函数的解析式可知,对称轴为直线x=-1,且图象开口向上,∴点离对称轴距离越远函数值越大,∵-1-(-2)=1,1-(-1)=2,2-(-1)=3,∴a<b<c,故答案为:a<b<c.【题目点拨】此题主要考查二次函数图象上点的坐标特征,熟练掌握二次函数的顶点式以及图象上点的坐标特征是解答的关键.三、解答题(共78分)19、(1)详见解析;(2)1.【解题分析】(1)先画出AC的垂直平分线,垂足为O,然后截取OB=OD即可;(2)根据菱形的性质及勾股定理即可求出边长.【题目详解】解:(1)如图所示,四边形ABCD即为所求作的菱形;(2)∵AC=8,BD=6,且四边形ABCD是菱形,∴AO=4,DO=3,且∠AOD=90°则AD===1.【题目点拨】本题主要考查菱形的画法及性质,掌握菱形的性质是解题的关键.20、(1)m=6,y=﹣;(2)k=﹣4或﹣2.【分析】(1)根据反比例函数k的几何意义,求出n的值即可解决问题;(2)分1种情形讨论,①当点A在x轴正半轴上时,由OB∥PQ,可得OB:PQ=AB:AP=1:1,继而求出OB=2,即B(0,2),待定系数法求一次函数解析式即可;②当点A在x轴负半轴上时,由于PB=2AB,显然这种情形不存在;③当点B在y轴负半轴上时,由于PB=2AB,可得PA=PB,根据PQ∥OB,可得,即QA=AO=,求出A(﹣,0),待定系数法求一次函数解析式即可.【题目详解】(1)∵过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1,∴,∵n<0,∴n=﹣6,∴反比例函数的解析式为y=﹣,∴P(﹣1,6),∴m=6,y=﹣.(2)①当点A在x轴正半轴上时,∵OB∥PQ,∴OB:PQ=AB:AP=1:1,∴OB=2,∴B(0,2),把P(﹣1,6),B(0,2)代入y=kx+b中得到,解得.②当点A在x轴负半轴上时,∵PB=2AB,显然这种情形不存在.③当点B在y轴负半轴上时,∵PB=2AB,∴PA=PB,∵PQ∥OB,∴,∴QA=AO=,∴A(﹣,0),把P(﹣1,6),A(﹣,0)代入y=kx+b中得到,解得,综上所述,k=﹣4或﹣2.【题目点拨】本题主要考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题.21、(1)无人机的高约为19m;(2)无人机的平均速度约为5米/秒或26米/秒【分析】(1)如图,过点作,垂足为点,设,则.解直角三角形即可得到结论;(2)过点作,垂足为点,解直角三角形即可得到结论.【题目详解】解:(1)如图,过点作,垂足为点.∵,∴.设,则.∵在Rt△ACH中,,∴.∴.解得:∴.答:计算得到的无人机的高约为19m.(2)过点F作,垂足为点.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:计算得到的无人机的平均速度约为5米/秒或26米/秒.【题目点拨】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2)连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【题目详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切线;(2)连接BC,∵AB为直径,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【题目点拨】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.23、(1)t=;(2)当t为2s或3s时,△PBQ的面积等于cm2.【分析】(1)根据PQ∥AC得到△PBQ∽△ABC,列出比例式即可求解;(2)解法一:过点Q作QE⊥AB于E,利用△BQE∽△BCA,得到,得到QE=t,根据S△PBQ=BP·QE=列出方程即可求解;解法二:过点P作PE⊥BC于E,则PE∥AC,得到△BPE∽△BAC,则,求出PE=(10-2t).,利用S△PBQ=BQ·PE=列出方程即可求解.【题目详解】(1)由题意得,BQ=tcm,AP=2cm,则BP=(10—2t)cm在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm∵PQ∥AC,∴△PBQ∽△ABC,∴,即,解得t=.(2)解法一:如图3,过点Q作QE⊥AB于E,则∠QEB=∠C=90°.∵∠B=∠B,∴△BQE∽△BCA,∴,即,解得QE=t.∴S△PBQ=BP·QE=,即·(10-2t)·t=.整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园门卫消防应急处理聘用合同范本3篇
- 2024年软装饰品采购合作合同样本版B版
- 2024年跨区域能源供应协议
- 2024年货车司机就业协议
- 2024某网络公司与某广告公司之间关于网络推广服务的合同
- 2024年高端医疗设备采购与技术支持合同
- 2024年购房委托代理协议
- 2024电子产品模具加工与质量保证合同
- 2024年离异后财产处置协议:双方协商达成
- 2025年度智能温室大棚承包经营合同范本3篇
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 经济职业技术学院教务教学管理制度汇编(2024年)
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之15:“6策划-6.4创新组合”(雷泽佳编制-2025B0)
- 2025混凝土外加剂买卖合同
- 《环境感知技术》2024年课程标准(含课程思政设计)
- 2024年电影院项目可行性研究报告
- GB/T 45079-2024人工智能深度学习框架多硬件平台适配技术规范
- 福建省厦门市2023-2024学年高二上学期期末考试质量检测化学试题 附答案
- 2024年安徽省铜陵市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 假期师生读书活动方案2024年
评论
0/150
提交评论