版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市兰山区李官中学2022-2023学年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某种计算机病毒是通过电子邮件进行传播的,表格是某公司前5天监测到的数据:第x天12345被感染的计算机数量y(台)12244995190则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是()A.y=12x B.y=6x2﹣6x+12 C.y=6?2x D.y=12log2x+12参考答案:C【考点】线性回归方程.【专题】函数思想;分析法;概率与统计.【分析】根据表格中y的增长速度进行判断.【解答】解:由表格可知,每一天的计算机被感染台数大约都是前一天的2倍,故增长速度符合指数型函数增长.故选:C.【点评】本题考查了不同函数模型的增长速度问题,属于基础题.2.关于x的不等式的解集是,则关于x的不等式的解集是()A. B.C. D.参考答案:B试题分析:由不等式的解集是可知:,且,则不等式的解集等价于不等式的解集,即原不等式的解集为.考点:不等式的解法.
3.数列的通项公式是,若前n项的和为,则项数n为,(
)A.4
B.5
C.6
D.7参考答案:C略4.如果执行右面的程序框图,输入,那么输出的等于A.720
B.360
C.240
D.120参考答案:B略5.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为(
)A.80B.40C.60D.20参考答案:B考点:分层抽样方法.专题:概率与统计.分析:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.解答: 解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4:3:2:1,∴三年级要抽取的学生是×200=40,故选:B.点评:本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果6.在中,,是它的两边长,S是的面积,若,则的形状是(
)A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形参考答案:D略7.(5分)已知向量=(3,﹣4),=(6,﹣3),=(2m,m+1).若,则实数m的值为() A. B. ﹣3 C. D. ﹣参考答案:B考点: 平行向量与共线向量;平面向量的坐标运算.专题: 平面向量及应用.分析: 先求得得==(3,1),再由,则这两个向量的坐标对应成比例,解方程求得实数m的值,可得结论.解答: 由题意可得==(3,1),若,则这两个向量的坐标对应成比例,即,解得m=﹣3,故选:B.点评: 本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于基础题.8.下列各组函数表示相等函数的是(
)A.y=与y=x+2 B.y=与y=x﹣3C.y=2x﹣1(x≥0)与s=2t﹣1(t≥0) D.y=x0与y=1参考答案:C【考点】判断两个函数是否为同一函数.【专题】函数思想;定义法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.【解答】解:对于A,函数y==x+2(x≠2),与y=x+2(x∈R)的定义域不同,所以不是同一函数;对于B,函数y=(x≤﹣3x≥3),与y=x﹣3(x∈R)的定义域不同,对应关系也不同,所以不是同一函数;对于C,函数y=2x﹣1(x∈R),与y=2t﹣1(t∈R)的定义域相同,对应关系也相同,所以是同一函数;对于D,函数y=x0=1(x≠0),与y=1(x∈R)的定义域不同,所以不是同一函数.故选:C.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.不等式的解集是(
)
A.
B.
C. D.参考答案:B略10.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,中位数分别为m甲,m乙,则
A.,m甲>m乙
B.,m甲<m乙,
C.,m甲>m乙,
D.,m甲<m乙,参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=,且函数F(x)=f(x)+x﹣a有且仅有两个零点,则实数a的取值范围是.参考答案:a≤1【考点】函数零点的判定定理.【分析】根据函数与方程的关系,将函数问题转化为两个函数的交点问题,利用数形结合进行求解即可.【解答】解:由F(x)=f(x)+x﹣a=0得f(x)=﹣x+a,作出函数f(x)和y=﹣x+a的图象如图:当直线y=﹣x+a经过点A(0,1)时,两个函数有两个交点,此时1=﹣0+a,即a=1,要使两个函数有两个交点,则a≤1即可,故实数a的取值范围是a≤1,故答案为:a≤112.已知圆,直线,如果圆M上总存在点A,它关于直线l的对称点在x轴上,则k的取值范围是
.参考答案:圆方程化为,设圆上一点关于的对称点在x轴上为,则,消去化为,设,,得,即,,,,的取值范围是,故答案为.
13.函数在上的单调减区间为_________。参考答案:
解析:令,必须找的增区间,画出的图象即可14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为_________和_________.参考答案:24,2315.已知函数的图象上关于y轴对称的点恰有9对,则实数a的取值范围是.参考答案:【考点】3O:函数的图象.【分析】求出函数f(x)=sin(x)﹣1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.【解答】解:若x>0,则﹣x<0,∵x<0时,f(x)=sin(x)﹣1,∴f(﹣x)=sin(﹣x)﹣1=﹣sin(x)﹣1,则若f(x)=sin(x)﹣1,(x<0)关于y轴对称,则f(﹣x)=﹣sin(x)﹣1=f(x),即y=﹣sin(x)﹣1,x>0,设g(x)=﹣sin(x)﹣1,x>0作出函数g(x)的图象,要使y=﹣sin(x)﹣1,x>0与f(x)=logax,x>0的图象恰有9个交点,则0<a<1且满足f(17)>g(17)=﹣2,f(21)<g(21)=﹣2,即﹣2<loga17,loga21<﹣2,即loga17>logaa﹣2,loga21<logaa﹣2,则17<,21>,解得<a<,故答案为:16.已知其中是第三象限角,则
参考答案:17.已知函数,若对任意,恒有,则的取值范围是
.参考答案:(1,3);
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等差数列{an}的前n项和为Sn,且,.(1)求数列{an}的通项公式;(2)若,求n的值.参考答案:(1);(2)4.【分析】(1)运用等差数列的性质求得公差d,再由及d求得通项公式即可.(2)利用前n项和公式直接求解即可.【详解】(1)设数列的公差为,∴,故.(2),∴,解得或(舍去),∴.19.(12分)在平面直角坐标系xoy中,点。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足,求t的值。参考答案:20.已知为锐角,若试求的值.参考答案:
故:
解法2:联立方程组求解:由所以:
(1)由(1)知再联立
可得
又
所以解法3:由,
此时
而即所以.略21.(本小题满分12分)已知函数.(1)若函数有两个零点,求的取值范围;(2)若函数在区间与上各有一个零点,求的取值范围.参考答案:解(1)函数有两个零点,即方程有两个不等实根,
令,即,解得;又,
所以的取值范围为,
(2)若函数在区间与上各有一个零点,由的图像可知,只需
,
即,解得。略22.求证:﹣2cos(α+β)=.参考答案:【考点】GJ:三角函数恒等式的证明.【分析】先转换命题,只需证sin(2α+β)﹣2cos(α+β)?si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业软件销售协议条款范本(2024年度)版B版
- 2025年度快递业务运费标准合同范本3篇
- 北京市中考语文模拟试卷二套【附参考答案】
- 3 认识方向(说课稿)-2023-2024学年二年级上册数学 苏教版
- 2024招投标法规与协议管理实务操作指南版
- 2024毛竹山竹林碳汇项目承包合作协议3篇
- 16《新年的礼物》第一课时(说课稿)-2023-2024学年道德与法治一年级上册统编版
- 2024版买卖合同协议书
- 4 说说我们的学校(说课稿)2024-2025学年统编版道德与法治三年级上册
- 医院内分泌科改善护理服务行动用“心”控糖 共筑健康
- 城市轨道交通安全防范系统技术要求
- 电科院:储能构网控制及并网测试
- 广东省初级中学学生学籍表
- 生鲜超市供货超市供货服务方案
- 银行营销拆迁户活动方案
- 智能养老app项目商业计划书
- 25道长江存储固件工程师岗位常见面试问题含HR常问问题考察点及参考回答
- 《交通规划原理》课件
- (完整版)四年级口算题大全100道
- 警察急救能力培训课件模板
- 倍加福-KFU8-UFC-信号隔离或转换模块中文操作指导
评论
0/150
提交评论