




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省开封市金明中学2024届九年级数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.顺次连接边长为的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A. B. C. D.2.已知圆锥的母线长为4,底面圆的半径为3,则此圆锥的侧面积是()A.6π B.9π C.12π D.16π3.对于二次函数y=4(x+1)(x﹣3)下列说法正确的是()A.图象开口向下B.与x轴交点坐标是(1,0)和(﹣3,0)C.x<0时,y随x的增大而减小D.图象的对称轴是直线x=﹣14.掷一枚质地均匀的硬币次,下列说法中正确的是()A.可能有次正面朝上 B.必有次正面朝上C.必有次正面朝上 D.不可能次正面朝上5.将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是()A.y=(x+1)2-4 B.y=-(x+1)2-4 C.y=(x+3)2-4 D.y=-(x+3)2-46.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:17.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. B. C. D.8.下列说法正确的是()A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%9.关于反比例函数,下列说法错误的是()A.随的增大而减小 B.图象位于一、三象限C.图象过点 D.图象关于原点成中心对称10.一元二次方程有一根为零,则的值为()A. B. C.或 D.或11.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.菱形 C.等边三角形 D.等腰直角三角形12.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若是抛物线上两点,则,其中说法正确的是(
)A.①② B.②③ C.①②④ D.②③④二、填空题(每题4分,共24分)13.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.14.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m15.如图,在中,交于点,交于点.若、、,则的长为_________.16.已知方程x2﹣3x﹣5=0的两根为x1,x2,则x12+x22=_________.17.将抛物线向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为_________________.18.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.三、解答题(共78分)19.(8分)为了估计鱼塘中的鱼数,养鱼老汉首先从鱼塘中打捞条鱼,并在每一条鱼身上做好记号,然后把这些鱼放归鱼塘,过一段时间,让鱼儿充分游动,再从鱼塘中打捞条鱼,如果在这条鱼中有条是有记号的,那么养鱼老汉就能估计鱼塘中鱼的条数.请写出鱼塘中鱼的条数,并说明理由.20.(8分)如图,四边形中,,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,求的长.21.(8分)如图⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点M由点B出发沿BA方向向点A匀速运动,同时点N由点A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接MN,设运动时间为t(s)﹙0<t<4﹚,解答下列问题:⑴设△AMN的面积为S,求S与t之间的函数关系式,并求出S的最大值;⑵如图⑵,连接MC,将△MNC沿NC翻折,得到四边形MNPC,当四边形MNPC为菱形时,求t的值;⑶当t的值为,△AMN是等腰三角形.22.(10分)(1)解方程:(2)某快递公司,今年三月份与五月份完成投递的快递总件数分别为万件和万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均増长率.23.(10分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.24.(10分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E,(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)25.(12分)已知:如图,是正方形的对角线上的两点,且.求证:四边形是菱形.26.已知x2﹣8x+16﹣m2=0(m≠0)是关于x的一元二次方程(1)证明:此方程总有两个不相等的实数根;(2)若等腰△ABC的一边长a=6,另两边长b、c是该方程的两个实数根,求△ABC的面积.
参考答案一、选择题(每题4分,共48分)1、A【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH=9cm,由等边三角形的面积公式即可得出答案.【题目详解】如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:
∵△GHM是等边三角形,
∴∠MGH=∠GHM=60°,
∵六边形ABCDEF是正六边形,
∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,
∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,
∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,
∴∠BAF+∠AGH=180°,
∴AB∥GH,
∵作AP⊥GH于P,BQ⊥GH于Q,
∴PQ=AB=6cm,∠PAG=90°-60°=30°,
∴PG=AG=cm,
同理:QH=cm,
∴GH=PG+PQ+QH=9cm,
∴△GHM的面积=GH2=cm2;
故选:A.【题目点拨】此题主要考查了正六边形的性质、等边三角形的性质及三角形的面积公式等知识;熟练掌握正六边形和等边三角形的性质是解题的关键.2、C【分析】圆锥的侧面积就等于经母线长乘底面周长的一半.依此公式计算即可.【题目详解】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12π,故选C.考点:圆锥的计算.3、C【解题分析】先把解析式化为顶点式的二次函数解析式,再利用二次函数的性质求解即可.【题目详解】A.∵a=4>0,图象开口向上,故本选项错误,
B.与x轴交点坐标是(-1,0)和(3,0),故本选项错误,
C.当x<0时,y随x的增大而减小,故本选项正确,
D.图象的对称轴是直线x=1,故本选项错误,
故选C.【题目点拨】本题主要考查了二次函数的性质,解题的关键是理解并灵活运用二次函数的性质.4、A【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【题目详解】解:.掷一枚质地均匀的硬币次,可能有2次正面朝上,故本选项正确;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;.掷一枚质地均匀的硬币次,有可能有次正面朝上,故本选项错误;故选:.【题目点拨】本题考查的知识点是随机事件的概念,理解随机事件的概念是解题的关键.5、C【分析】先确定抛物线𝑦=𝑥2+4𝑥+3的顶点坐标为(-2,-1),再根据点平移的规律得到点(-2,-1)平移后所得对应点的坐标为(-3,-4),然后根据顶点式写出平移后的抛物线解析式.【题目详解】解:∵y=x2+4x+3=x2+4x+4-4+3=(x+2)2-1∵将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位∴平移后的函数解析式为:y=(x+2+1)2-1-3,即y=(x+3)2-4.故选:C【题目点拨】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、A【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【题目详解】∵如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF,∴将△ABC的三边缩小到原来的,此时点O为位似中心且△ABC与△DEF的位似比为2:1,故选项A说法错误,符合题意;△ABC与△DEF是位似图形,故选项B说法正确,不合题意;△ABC与△DEF是相似图形,故选项C说法正确,不合题意;△ABC与△DEF的面积之比为4:1,故选项D说法正确,不合题意;故选:A.【题目点拨】此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.7、C【解题分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【题目详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是2.故选C.【题目点拨】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.8、D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【题目详解】解:A、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;
B、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;
C、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;
D、正确.
故选:D.【题目点拨】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.9、A【分析】根据反比例函数的性质用排除法解答.【题目详解】A、反比例函数解析式中k=2>0,则在同一个象限内,y随x增大而减小,选项中没有提到每个象限,故错误;B、2>0,图象经过一三象限,故正确;C、把x=-1代入函数解析式,求得y=-2,故正确;D、反比例函数图象都是关于原点对称的,故正确.故选:A.【题目点拨】本题考查了反比例函数的性质,解题的关键是要明确反比例函数的增减性必须要强调在同一个象限内.10、B【分析】把代入一元二次方程,求出的值,然后结合一元二次方程的定义,即可得到答案.【题目详解】解:∵一元二次方程有一根为零,∴把代入一元二次方程,则,解得:,∵,∴,∴;故选:B.【题目点拨】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出的值.11、B【解题分析】试题解析:A.不是轴对称图形,是中心对称图形,故此选项错误,不合题意;B.是轴对称图形,也是中心对称图形,故此选项正确,符合题意;C.是轴对称图形,不是中心对称图形,故此选项错误,不合题意;D.无法确定是轴对称图形,也不是中心对称图形,故此选项错误,不合题意.故选B.12、A【分析】根据二次函数的图像和性质逐个分析即可.【题目详解】解:对于①:∵抛物线开口向上,∴a>0,∵对称轴,即,说明分子分母a,b同号,故b>0,∵抛物线与y轴相交,∴c<0,故,故①正确;对于②:对称轴,∴,故②正确;对于③:抛物线与x轴的一个交点为(-3,0),其对称轴为直线x=-1,根据抛物线的对称性可知,抛物线与x轴的另一个交点为,1,0),故当自变量x=2时,对应的函数值y=,故③错误;对于④:∵x=-5时离对称轴x=-1有4个单位长度,x=时离对称轴x=-1有个单位长度,由于<4,且开口向上,故有,故④错误,故选:A.【题目点拨】本题考查了二次函数的图像与其系数的符号之间的关系,熟练掌握二次函数的图形性质是解决此类题的关键.二、填空题(每题4分,共24分)13、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【题目详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【题目点拨】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.14、6【分析】先求出飞机停下时,也就是滑行距离最远时,s最大时对应的t值,再求出最后2s滑行的距离.【题目详解】由题意,y=60t-t2,=−(t−20)2+600,即当t=20秒时,飞机才停下来.∴当t=18秒时,y=−(18−20)2+600=594m,故最后2s滑行的距离是600-594=6m故填:6.【题目点拨】本题考查了二次函数的应用.解题时,利用配方法求得t=20时,s取最大值,再根据题意进行求解.15、6【分析】接运用平行线分线段成比例定理列出比例式,借助已知条件即可解决问题.【题目详解】,∵DE∥BC,∴,即,解得:,故答案为:.【题目点拨】本题主要考查了平行线分线段成比例定理及其应用问题;运用平行线分线段成比例定理正确写出比例式是解题的关键.16、1.【解题分析】试题解析:∵方程的两根为故答案为1.点睛:一元二次方程的两个根分别为17、.【解题分析】∵将抛物线向左平移2个单位,再向上平移1个单位,∴抛物线的顶点(0,0)也同样向左平移2个单位,再向上平移1个单位,得到新抛物线的的顶点(-2,1).∴平移后得到的抛物线的解析式为.18、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【题目详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.三、解答题(共78分)19、.【分析】设鱼塘中鱼的条数为x,根据两次打捞的鱼中身上有记号的鱼的概率相等建立方程,然后求解即可得.【题目详解】设鱼塘中鱼的条数为x由题意和简单事件的概率计算可得:解得:经检验,是所列分式方程的解答:鱼塘中鱼的条数为.【题目点拨】本题考查了简单事件的概率计算、分式方程的实际应用,依据题意,正确建立方程是解题关键.20、(1)详见解析;(2)【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.【题目详解】解:(1):∵,平分,∴,∴,∵,∴,∴,∴;(2)过点作于点,∵,∴,∵,∴,∴,设,∵,∴,∵,∴,解得:,∴.【题目点拨】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM∽△APD是解题关键.21、(1),;(2)t=;(3)或或【分析】(1)如图过点M作MD⊥AC于点D,利用相似三角形的性质求出MD即可解决问题;(2)连接PM,交AC于D,,当四边形MNPC为菱形时,ND=,即可用t表示AD,再结合第一问的相似可以用另外一个含t式子表示AD,列方程计算即可;(3)分别用t表示出AP、AQ、PQ,再分三种情况讨论:①当AQ=AP②当PQ=AQ③当PQ=AP,再分别计算即可.【题目详解】解:⑴过点M作MD⊥AC于点D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵连接PM,交AC于D,∵四边形MNPC是菱形,则MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.【题目点拨】此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答.22、(1);(2)该快递公司投递总件数的月平均增长率为10%.【分析】(1)用因式分解法即可求解;(2)五月份完成投递的快递总件数=三月份完成投递的快递总件数×(1+x)2,进而列出方程,解方程即可.【题目详解】(1)∴∴4x-3=0或2x+1=0∴(2)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合题意舍去)答:该快递公司投递总件数的月平均增长率为10%.【题目点拨】此题主要考查了一元二次方程的应用---增长率问题,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.23、该种药品平均每次降价的百分率是30%.【解题分析】试题分析:设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是,据此列出方程求解即可.试题解析:设该种药品平均每场降价的百分率是x,由题意得:解得:(不合题意舍去),=30%.答:该种药品平均每场降价的百分率是30%.考点:一元二次方程的应用;增长率问题.24、(1)见解析;(2)【分析】(1)连接OD,由BC是⊙O的切线,可得∠ABC=90°,由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由,即可求得答案.【题目详解】解:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵点D在⊙O上,∴CD为⊙O的切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版医药市场场调研合同协议书范本
- 2025版网络安全监测与预警合同
- 二零二五年度房产金融服务补充协议书范本
- 二零二五年度大型木材原料采购及销售合作协议
- 2025年度绿色环保二手电动汽车买卖合同范本
- 2025版私人墓地购置与墓园社区共建合作协议
- 二零二五年电影后期制作设备与技术支持合同
- 2025版房地产海外市场拓展合作合同
- 二零二五年度房地产工程建设贷款合同(含建筑废弃物资源化利用)
- 二零二五年度货运汽车租赁及车辆租赁违约责任合同
- 维克多高中英语3500词汇
- 10KV高压电缆课件
- 艾默生EV2000变频器主要参数设置
- 餐饮行业服务食品安全风险评估表
- 附件4气象业务系统mdos操作平台用户使用手册
- JJF 1910-2021电化学工作站校准规范
- 公司慰问金签收单模板
- ks-s3002腔全自动刻蚀机规格书
- 资产损失税前扣除的审核课件
- 食材配送难点分析及应对措施方案
- 2022年安全生产文明施工措施费使用计划表(完整)
评论
0/150
提交评论