




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市八校联考数学九年级第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.关于二次函数y=2x2+4,下列说法错误的是()A.它的开口方向向上 B.当x=0时,y有最大值4C.它的对称轴是y轴 D.顶点坐标为(0,4)2.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣23.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.4.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离5.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. B. C. D.6.某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是()mA. B. C. D.7.已知如图,中,,点在边上,且,则的度数是().A. B. C. D.8.已知如图,直线,相交于点,且,添加一个条件后,仍不能判定的是().A. B. C. D.9.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A. B. C. D.10.从某多边形的一个顶点出发,可以作条对角线,则这个多边形的内角和与外角和分别是()A.; B.; C.; D.;11.如图所示,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是;④方程有一个实根大于;⑤当时,随增大而增大.其中结论正确的个数是()A.个 B.个 C.个 D.个12.若,则函数与在同一平面直角坐标系中的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____14.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为
________.15.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.16.若是方程的一个根,则代数式的值是______.17.若△ABC∽△A′B′C′,且=,△ABC的周长为12cm,则△A′B′C′的周长为_______cm.18.下表是某种植物的种子在相同条件下发芽率试验的结果.种子个数100400900150025004000发芽种子个数92352818133622513601发芽种子频率0.920.880.910.890.900.90根据上表中的数据,可估计该植物的种子发芽的概率为________.三、解答题(共78分)19.(8分)小寇随机调查了若干租用共享单车市民的骑车时间t(单位:分),将获得的据分成四组(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),绘制了如下统计图,根据图中信息,解答下列问题:(1)小寇调查的总人数是人;(2)表示C组的扇形统计图的圆心角的度数是°;(3)如果小寇想从D组的甲、乙、丙、丁四人中随机选择两人进一步了解平时租用共享单车情况,请用列表或画树状图的方法求出丁被选中的概率.20.(8分)如图,已知二次函数y=ax1+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:1.(1)求这个二次函数的表达式;(1)若点M为x轴上一点,求MD+MA的最小值.21.(8分)如图,在中,,是的平分线,是上一点,以为半径的经过点.(1)求证:是切线;(2)若,,求的长.22.(10分)如图,若b是正数.直线l:y=b与y轴交于点A,直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=6,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.23.(10分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?24.(10分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.25.(12分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?26.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB∶BD=.(1)求tan∠DAC的值.(2)若BD=4,求S△ABC.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可.【题目详解】解:A.因为2>0,所以它的开口方向向上,故不选A;B.因为2>0,二次函数有最小值,当x=0时,y有最小值4,故选B;C.该二次函数的对称轴是y轴,故不选C;D.由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D.故选:B.【题目点拨】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.2、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【题目详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.3、A【解题分析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.4、C【解题分析】分析:首先画出图形,根据点的坐标得到圆心到X轴的距离是4,到Y轴的距离是3,根据直线与圆的位置关系即可求出答案.解答:解:圆心到X轴的距离是4,到y轴的距离是3,4=4,3<4,∴圆与x轴相切,与y轴相交,故选C.5、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【题目详解】∵DE//BC,∴,故A正确;∵DF//BE,∴△ADF∽△ABF,∴,故B正确;∵DF//BE,∴,∵,∴,故C正确;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D错误.故选D.【题目点拨】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.6、B【分析】设他上升的最大高度是hm,根据坡角及三角函数的定义即可求得结果.【题目详解】设他上升的最大高度是hm,由题意得,解得故选:B.7、B【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【题目详解】设∠A=x.
∵AD=BD,
∴∠ABD=∠A=x;
∵BD=BC,
∴∠BCD=∠BDC=∠ABD+∠A=2x;
∵AB=AC,
∴∠ABC=∠BCD=2x,
∴∠DBC=x;
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°故选:B【题目点拨】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.8、C【分析】根据全等三角形判定,添加或或可根据SAS或ASA或AAS得到.【题目详解】添加或或可根据SAS或ASA或AAS得到,添加属SSA,不能证.故选:C【题目点拨】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.9、B【题目详解】解:由题意得:俯视图与选项B中图形一致.故选B.【题目点拨】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.10、A【分析】根据边形从一个顶点出发可引出条对角线,求出的值,再根据边形的内角和为,代入公式就可以求出内角和,根据多边形的外角和等于360,即可求解.【题目详解】∵多边形从一个顶点出发可引出4条对角线,
∴,
解得:,
∴内角和;任何多边形的外角和都等于360.故选:A.【题目点拨】本题考查了多边形的对角线,多边形的内角和及外角和定理,是需要熟记的内容,比较简单.求出多边形的边数是解题的关键.11、A【解题分析】根据二次函数的图象与性质进行解答即可.【题目详解】解:∵抛物线开口方向向下∴a<0又∵对称轴x=1∴∴b=-2a>0又∵当x=0时,可得c=3∴abc<0,故①正确;∵b=-2a>0,∴y=ax2-2ax+c当x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②错误;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正确;∵对称轴x=1,与x轴的左交点的横坐标小于0∴函数图像与x轴的右交点的横坐标大于2∴的另一解大于2,故④正确;由函数图像可得,当时,随增大而增大,故⑤正确;故答案为A.【题目点拨】本题考查二次函数的图象与性质,熟练运用二次函数的基本知识和正确运用数形结合思想是解答本题的关键.12、B【分析】根据及正比例函数与反比例函数图象的特点,可以从和两方面分类讨论得出答案.【题目详解】∵,∴分两种情况:
(1)当时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
(2)当时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.
故选:B.【题目点拨】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,解题的关键是掌握它们的性质.二、填空题(每题4分,共24分)13、70°或120°【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【题目详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°,,∴,∴,故答案为70°或120°.【题目点拨】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.14、【分析】采用列举法求概率.【题目详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=.故答案为:【题目点拨】本题考查概率的计算,题目比较简单.15、【分析】直接根据概率公式求解.【题目详解】解:随机摸出一个球是红色的概率=.
故答案为:.【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16、9【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【题目详解】解:∵a是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9.【题目点拨】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.17、16cm【解题分析】∵△ABC∽△A′B′C′,,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.18、0.1【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.1左右,从而得到结论.【题目详解】由表格可得,当实验次数越来越多时,发芽种子频率稳定在0.1,符合用频率佔计概率,∴种子发芽概率为0.1.故答案为:0.1.【题目点拨】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(共78分)19、(1)50;(2)86.4;(3)【分析】(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数;(2)用总人数减去A、B、D组的人数,求出C组的人数;再用C组人数除以总人数乘360°即可得到C组扇形统计图对应的圆心角度数;(3)画出树状图,由概率公式即可得出答案.【题目详解】解:(1)调查的总人数是:19÷38%=50(人);故答案为:50(人)(2)C组所占的人数为:50-15-19-4=12人故C组的扇形统计图的圆心角的度数是:故答案为:(3)画树状图,如下图所示,共有12个可能的结果,恰好选中丁的结果有6个,故P(丁被选中的概率)=.故答案为:【题目点拨】本题考查了列表法与树状图法、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20、(1);(1).【分析】(1)先把D点坐标代入y=﹣x+b中求得b,则一次函数解析式为y=﹣x﹣3,于是可确定A(﹣6,0),作EF⊥x轴于F,如图,利用平行线分线段成比例求出OF=4,接着利用一次函数解析式确定E点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),利用勾股定理得到AD=3,再证明Rt△AMH∽Rt△ADO,利用相似比得到MH=AM,加上MD=MD′,MD+MA=MD′+MH,利用两点之间线段最短得到当点M、H、D′共线时,MD+MA的值最小,然后证明Rt△DHD′∽Rt△DOA,利用相似比求出D′H即可.【题目详解】解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=﹣x﹣3=﹣5,∴E点坐标为(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax1+4ax+c得,解得,∴抛物线解析式为;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,当点M、H、D′共线时,MD+MA=MD′+MH=D′H,此时MD+MA的值最小,∵∠D′DH=∠ADO,∴Rt△DHD′∽Rt△DOA,∴=,即=,解得D′H=,∴MD+MA的最小值为.【题目点拨】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.21、(1)证明见解析;(2).【分析】(1)如图,连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.(2)过点D作DE⊥AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过设未知数利用勾股定理得出AC的长.【题目详解】(1)证明:如解图1所示,连接.平分.,,,,,,,是的切线;(2)如解图2,过作于,又平分,,,,,在中,,由勾股定理,得,设,则,在中,则由勾股定理,得:,解得:,的长为.【题目点拨】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了角平分线的性质,勾股定理.22、(1)L的对称轴x=1.5,L的对称轴与a的交点为(1.5,﹣1.5);(2)1;(1);(4)b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【分析】(1)当x=0时,y=x﹣b=﹣b,所以B(0,﹣b),而AB=6,而A(0,b),则b﹣(﹣b)=6,b=1.所以L:y=﹣x2+1x,对称轴x=1.5,当x=1.5时,y=x﹣1=﹣1.5,于是得到结论.(2)由y=﹣(x﹣)2+,得到L的顶点C(,),由于点C在l下方,于是得到结论;(1)由題意得到y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,得到右交点D(b,0).于是得到结论;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【题目详解】解:(1)当x=0时,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=6,而A(0,b),∴b﹣(﹣b)=6,∴b=1.∴L:y=﹣x2+1x,∴L的对称轴x=1.5,当x=1.5时,y=x﹣1=﹣1.5,∴L的对称轴与a的交点为(1.5,﹣1.5);(2)y=﹣(x﹣)2+∴L的顶点C(,),∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(1)由题意得y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,对于L,当y=0时,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x,直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【题目点拨】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.23、(1)∴.(2)m=2或3.【解题分析】(1)利用一元二次方程求根根式解方程.(2)利用(1)中x的值来确定m的值.【题目详解】解:(1)根据题意得m≠1,△=(–2m)2-4(m-1)(m+1)=4,∴.(2)由(1)知,∵方程的两个根都是正整数,∴是正整数.∴m-1=1或2..∴m=2或3.考点:公式法解一元二次方程,一元二次方程的解.24、(1)1;(2)128;(3).【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可;(3)易证∠BCE=90°,求cos∠AEB的值可转化为求cos∠EBC的值,利用勾股定理求出BE的长即可.【题目详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,(2)∵四边形ABCD是平行四边形.∴CD=AB=1,在CED中,CD=1,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(1+6)×8=128;(3)∵四边形ABCD是平行四边形.∴BC∥AD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国酒精润版辊行业投资前景及策略咨询研究报告
- 2025至2031年中国细胞繁殖检测试剂盒行业投资前景及策略咨询研究报告
- 网络安全法与网络安全知识
- 语文(广东卷02)(全解全析)
- 2025年签订房屋租赁合同细节注意要点的分析
- 物联网与智能军事系统
- 环境保护科普知识
- 2025年全国大学生禁毒知识竞赛题库及答案(共60题)
- 2025年福建晋江产业发展投资集团有限公司招聘笔试参考题库附带答案详解
- 2025年江西赣州市崇义县金竹矿业有限公司招聘笔试参考题库附带答案详解
- 【复习资料】01180电视采访(复习提分要点)
- 2023年国家工信部信息中心事业单位招聘笔试参考题库(共500题)答案详解版
- 合理自我分析报告RSA
- GB/T 19670-2023机械安全防止意外启动
- 财产保险实务-教案项目1、2走进财产保险、企业财产保险
- 外科学教学课件:结、直肠与肛管疾病
- 2022年广东高考政治真题及答案
- 化学动力学基础(二)课件
- IATF16949-过程审核检查表-(含审核记录)-
- 陕西省二级以上医院信息
- 实验室安全检查记录表
评论
0/150
提交评论