2024届福建省东山县数学九年级第一学期期末复习检测模拟试题含解析_第1页
2024届福建省东山县数学九年级第一学期期末复习检测模拟试题含解析_第2页
2024届福建省东山县数学九年级第一学期期末复习检测模拟试题含解析_第3页
2024届福建省东山县数学九年级第一学期期末复习检测模拟试题含解析_第4页
2024届福建省东山县数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省东山县数学九年级第一学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为()A.相切 B.相交C.相离 D.不能确定2.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.3.如图,在Rt△ABC中,∠ACB=90°,若,BC=2,则sin∠A的值为()A. B. C. D.4.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=2005.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根6.二次函数中与的部分对应值如下表所示,则下列结论错误的是()-1013-1353A. B.当时,的值随值的增大而减小C.当时, D.3是方程的一个根7.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.8.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.109.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-10.如图,若一次函数的图象经过二、三、四象限,则二次函数的图象可能是A. B.C. D.11.已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是()A.当a=1时,函数图像过点(-1,1)B.当a=-2时,函数图像与x轴没有交点C.当a,则当x1时,y随x的增大而减小D.当a,则当x1时,y随x的增大而增大12.如图,在四边形中,对角线,相交于点,且,.若要使四边形为菱形,则可以添加的条件是()A. B. C. D.二、填空题(每题4分,共24分)13.A、B为⊙O上两点,C为⊙O上一点(与A、B不重合),若∠ACB=100°,则∠AOB的度数为____°.14.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.15.如图,是的直径,点、在上,连结、、、,若,,则的度数为________.16.中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为_____.(用百分数表示)17.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.18.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.三、解答题(共78分)19.(8分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.20.(8分)计算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°21.(8分)如图,在中,,,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作于,连接,设运动时间为,解答下列问题:(1)设的面积为,求与之间的函数关系式,的最大值是;(2)当的值为时,是等腰三角形.22.(10分)已知矩形ABCD的顶点A、D在圆上,B、C两点在圆内,请仅用没有刻度的直尺作图.(1)如图1,已知圆心O,请作出直线l⊥AD;(2)如图2,未知圆心O,请作出直线l⊥AD.23.(10分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.24.(10分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.(1)①的长为______;②的长用含的代数式表示为______;(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式.25.(12分)如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的解析式.(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.①若点在线段上(不与点,重合),连接,求面积的最大值.②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.26.如图,已知A,B(-1,2)是一次函数与反比例函数()图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】先解方程求得d,根据圆心到直线的距离d与圆的半径r之间的关系即可解题.【题目详解】解方程:x2–x–6=0,即:,解得,或(不合题意,舍去),

当时,,则直线与圆的位置关系是相交;故选:B【题目点拨】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离和半径的大小关系.没有交点,则;一个交点,则;两个交点,则.2、C【分析】找到从正面看所得到的图形即可.【题目详解】解:它的主视图是:故选:C.【题目点拨】本题考查了三视图的知识,掌握主视图是解题的关键.3、C【分析】先利用勾股定理求出AB的长,然后再求sin∠A的大小.【题目详解】解:∵在Rt△ABC中,,BC=2∴AB=∴sin∠A=故选:C.【题目点拨】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.4、C【解题分析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.5、C【解题分析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.6、C【分析】根据表格中的数值计算出函数表达式,从而可判断A选项,利用对称轴公式可计算出对称轴,从而判断其增减性,再根据函数图象及表格中y=3时对应的x,可判断C选项,把对应参数值代入即可判断D选项.【题目详解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本选项正确;B.该函数对称轴为直线,且,函数图象开口向下,所以当时,y随x的增大而减小,故本选项正确;C.由表格可知,当x=0或x=3时,y=3,且函数图象开口向下,所以当y<3时,x<0或x>3,故本选项错误;D.方程为,把x=3代入得-9+6+3=0,所以本选项正确.故选:C.【题目点拨】本题考查了二次函数表达式求法,二次函数图象与系数的关系,二次函数的性质等知识,“待定系数法”是求函数表达式的常用方法,需熟练掌握.7、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【题目详解】解:A、不是轴对称图形,故此选项错误;

B、不是轴对称图形,故此选项错误;

C、是轴对称图形,故此选项正确;

D、不是轴对称图形,故此选项错误.

故选C.【题目点拨】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【题目详解】∵AB为直径,

∴,

∵CD⊥AB,

∴,

∴,

∴,

∵,BC=6,

∴,∴,∴,∵,∴,∴.

故选:B.【题目点拨】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.9、B【解题分析】试题解析:连接AD,

∵BC是切线,点D是切点,

∴AD⊥BC,

∴∠EAF=2∠EPF=80°,

∴S扇形AEF=,

S△ABC=AD•BC=×2×4=4,

∴S阴影部分=S△ABC-S扇形AEF=4-π.10、C【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【题目详解】解:的图象经过二、三、四象限,,,抛物线开口方向向下,抛物线对称轴为直线,对称轴在y轴的左边,纵观各选项,只有C选项符合.故选C.【题目点拨】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a、b的正负情况是解题的关键.11、D【分析】根据二次函数的图象与性质逐项分析即可.【题目详解】y=ax2-2ax-1(a是常数且a≠0)A、当a=1时,y=x2−2x−1,令x=−1,则y=2,此项错误;B、当a=−2时,y=2x2+4x−1,对应的二次方程的根的判别式Δ=42−4×2×(−1)=24>0,则该函数的图象与x轴有两个不同的交点,此项错误;C、当a>0,y=ax2−2ax−1=a(x-1)2-a+1,则x≥1时,y随x的增大而增大,此项错误;D、当a<0时,y=ax2−2ax−1=a(x-1)2-a+1,则x≤1时,y随x的增大而增大,此项正确;故答案为:D.【题目点拨】本题考查了二次函数的图象与性质,掌握熟记图象特征与性质是解题关键.错因分析:较难题.失分原因可能是:①不会判断抛物线与x轴的交点情况;②不能画出拋物线的大致图象来判断增减性.12、D【分析】根据对角线互相平分的四边形是平行四边形可得四边形是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.【题目详解】解:∵在四边形中,,∴四边形是平行四边形若添加,则四边形是矩形,故A不符合题意;若添加,则四边形是矩形,故B不符合题意;若添加,与菱形的对角线互相垂直相矛盾,故C不符合题意;若添加则四边形是菱形,故D符合题意.故选D.【题目点拨】此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.二、填空题(每题4分,共24分)13、160°【分析】根据圆周角定理,由∠ACB=100°,得到它所对的圆心角∠α=2∠ACB=200°,用360°-200°即可得到圆心角∠AOB.【题目详解】如图,∵∠α=2∠ACB,

而∠ACB=100°,

∴∠α=200°,

∴∠AOB=360°-200°=160°.

故答案为:160°.【题目点拨】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.14、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【题目详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【题目点拨】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.15、°【分析】先由直径所对的圆周角为90°,可得:∠ADB=90°,根据同圆或等圆中,弦相等得到弧相等得到圆周角相等,得到∠A的度数,根据直角三角形的性质得到∠ABD的度数,即可得出结论.【题目详解】∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案为:50°.【题目点拨】本题考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.16、40%【解题分析】设该地区居民年人均收入平均增长率为,根据到2018年人均年收入达到39200元列方程求解即可.【题目详解】设该地区居民年人均收入平均增长率为,,解得,,(舍去),∴该地区居民年人均收入平均增长率为,故答案为:.【题目点拨】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n

=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.17、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【题目详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【题目点拨】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.18、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【题目详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【题目点拨】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.三、解答题(共78分)19、(1);(2);(3)或或.【解题分析】(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【题目详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或【题目点拨】此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.20、(1)2-;(2)-.

【解题分析】(1)直接利用特殊角的三角函数值代入即可求出答案;(2)直接利用特殊角的三角函数值代入即可求出答案.【题目详解】解:(1)2sin30°-tan60°+tan45°

=2×-+1

=2-;

(2)tan245°+sin230°-3cos230°

=×12+()2-3×()2

=+-

=-.

故答案为:(1)2-;(2)-.【题目点拨】本题考查特殊角的三角函数值,正确记忆相关数据是解题的关键.21、(1);(2)或或【分析】(1)先通过条件求出,再利用对应边成比例求出PD,再利用面积公式写出式子,再根据顶点公式求最大值即可.(2)分别讨论AQ=AP时,AQ=PQ时,AP=PQ时的三种情况.【题目详解】解(1),,又,.,,.,,,,,,,的最大值是.(2)由(1)知:AQ=2t,AP=10-2t,①当AQ=AP时,即2t=10-2t,解得t=.②当AQ=PQ时,作QE⊥AP,如图所示,根据等腰三角形的性质,AE=,易证Rt△AQE∽Rt△ACB,∴,即,解得t=.③当AP=PQ时,作PF⊥AQ,如图所示,根据等腰三角形的性质,AF=,易证Rt△AFP∽Rt△ACB,∴,即,解得t=.综上所述,t=或或.【题目点拨】本题考查三角形的动点问题及相似的判定和性质,关键在于合理利用相似得到等量关系.22、(1)作图见解析;(2)作图见解析【解题分析】解(答案不唯一):(1)如图1,直线l为所求;(2)如图2,直线l为所求.23、详见解析.【解题分析】由切线的性质可知∠ODE=90°,证明OD∥AE即可解决问题.【题目详解】连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°.∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【题目点拨】本题考查了切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.【分析】(1)①根据勾股定理即可直接计算AB的长;②根据三角函数即可计算出PN;

(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.

(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.【题目详解】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=2.

∴AB==3.

∴sin∠CAB=,

由题可知AP=5t,

∴PN=AP•sin∠CAB=5t•=3t.

故答案为:①3;②3t.

(2)当▱PQMN为矩形时,∠NPQ=90°,

∵PN⊥AB,

∴PQ∥AB,

∴,

由题意可知AP=CQ=5t,CP=20-5t,

∴,

解得t=,

即当▱PQMN为矩形时t=.

(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,

Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,

由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3t.

∴AN=AP•cosA=4t,BG=BQ•cosB=9-3t,QG=BQ•sinB=12-4t,

∵.▱PQMN在三角形内部时.有0<QM≤QG,

∴0<3t≤12-4t,

∴0<t≤.

∴NG=3-4t-(9-3t)=16-t.

∴当0<t≤时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16-t)=-3t2+48t.

Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQGN时,

即:0<12-4t<3t,解得:<t<3,

▱PQMN与△ABC重叠部分图形为梯形PQGN的面积S=NG(PN+QG)=(16−t)(3t+12−4t)=t2−14t+1.

综上所述:当0<t≤时,S=-3t2+48t.当<t<3,S=t2−14t+1.【题目点拨】本题考查了平行四边形的性质、勾股定理、矩形的性质、锐角三角函数等知识,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.25、(1);(2)①;②存在,当时,以点,,,为顶点的四边形是平行四边形.【分析】(1)把,带入即可求得解析式;(2)先用含m的代数式表示点P、M的坐标,再根据三角形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论