




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省高阳县联考九年级数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.sin30°的值为()A. B. C.1 D.2.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<63.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A. B. C. D.4.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.5.已知,则为()A. B. C. D.6.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55° B.60° C.65° D.70°7.将抛物线向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线的表达式为()A. B.C. D.8.下列函数是二次函数的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.9.二次函数的图象如图,则一次函数的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限10.二位同学在研究函数(为实数,且)时,甲发现当0<<1时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则()A.甲、乙的结论都错误 B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确 D.甲的结论错误,乙的结论正确二、填空题(每小题3分,共24分)11.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_____,此时每千克的收益是_________12.在相似的两个三角形中,已知其中一个三角形三边的长是3,4,5,另一个三角形有一边长是2,则另一个三角形的周长是.13.计算:|﹣3|+(2019﹣π)0﹣+()-2=_______.14.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为______km.15.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.16.小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是___________米.17.如图,为正五边形的一条对角线,则∠=_____________.18.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.三、解答题(共66分)19.(10分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=2,BP=1,求⊙O的半径.20.(6分)如图,在正方形中,是对角线上的一个动点,连接,过点作交于点.(1)如图①,求证:;(2)如图②,连接为的中点,的延长线交边于点,当时,求和的长;(3)如图③,过点作于,当时,求的面积.21.(6分)用配方法解方程:x2﹣8x+1=022.(8分)如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.23.(8分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.(1)该店销售该商品原来一天可获利润元.(2)设后来该商品每件售价降价元,此店一天可获利润元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.24.(8分)如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.25.(10分)计算:+2﹣1﹣2cos60°+(π﹣3)026.(10分)已知:如图,⊙O的直径AB与弦CD相交于点E,且E为CD中点,过点B作CD的平行线交弦AD的延长线于点F.(1)求证:BF是⊙O的切线;(2)连结BC,若⊙O的半径为2,tan∠BCD=,求线段AD的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接根据特殊角的三角函数值进行选择.【题目详解】sin30°=,故选:B.【题目点拨】此题考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.2、C【解题分析】试题解析:∵二次函数y=ax2+bx+c的顶点为(1,-4),∴对称轴为x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是-3<x<-2,∴右侧交点横坐标的取值范围是4<x<1.故选C.考点:图象法求一元二次方程的近似根.3、D【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD△BED,利用其对应边成比例可得,然后将已知数值代入即可求出DE的长.【题目详解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故选D.【题目点拨】本题考查圆周角定理以及相似三角形的判定与性质,根据其定理进行分析.4、D【解题分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【题目详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【题目点拨】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、D【分析】由题意先根据已知条件得出a=b,再代入要求的式子进行计算即可得出答案.【题目详解】解:∵,∴a=b,∴==.故选:D.【题目点拨】本题考查比例的性质和代数式求值,熟练掌握比例的性质是解题的关键.6、B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【题目详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=∠BOC=60°.故选B.【题目点拨】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.7、A【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【题目详解】原抛物线的顶点为(0,0),向左平移3个单位,再向上平移1个单位,那么新抛物线的顶点为(−3,1);可设新抛物线的解析式为y=−4(x−h)2+k,代入得:y=−4(x+3)2+1.故选:A.【题目点拨】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.8、C【分析】根据二次函数的定义作出判断.【题目详解】解:A、该函数属于一次函数,故本选项错误;B、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;C、该函数符合二次函数的定义,故本选项正确;D、该函数只有一个变量不符合二次函数的定义,故本选项错误;故选:C.【题目点拨】此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.9、C【解题分析】∵抛物线的顶点在第四象限,∴﹣>1,<1.∴<1,∴一次函数的图象经过二、三、四象限.故选C.10、D【分析】先根据函数的解析式可得顶点的横坐标,结合判断出横坐标可能取负值,从而判断甲不正确;再通过方程的根的判别式判断其根的情况,从而判断乙的说法.【题目详解】,原函数定为二次函数甲:顶点横坐标为,,所以甲不正确乙:原方程为,化简得:必有两个不相等的实数根,所以乙正确故选:D.【题目点拨】本题考查二次函数图象的性质、顶点坐标、一元二次方程的根的判别式,对于一般形式有:(1)当,方程有两个不相等的实数根;(2)当,方程有两个相等的实数根;(3)当,方程没有实数根.二、填空题(每小题3分,共24分)11、9时元【分析】观察图象找出点的坐标,利用待定系数法即可求出关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【题目详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得∴解得∴∴出售每千克这种水果收益:∵∴当时,y取得最大值,此时:∴在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为:9时;元【题目点拨】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.12、8或6或【分析】由一个三角形三边的长是3,4,5,可求得其周长,又由相似三角形周长的比等于相似比,分别从2与3对应,2与4对应,2与5对应,去分析求解即可求得答案.【题目详解】解:∵一个三角形三边的长是3,4,5,
∴此三角形的周长为:3+4+5=12,
∵在相似的两个三角形中,另一个三角形有一边长是2,
∴若2与3对应,则另一个三角形的周长是:;若2与4对应,则另一个三角形的周长是:;若2与5对应,则另一个三角形的周长是:.【题目点拨】本题考查相似三角形性质.熟知相似三角形性质,解答时由于对应边到比发生变化,会得到不同到结果,本题难度不大,但易漏求,属于基础题.13、【分析】直接利用负指数幂法则以及绝对值的代数意义和零指数幂的法则、算术平方根的性质分别化简得出答案.【题目详解】解:原式=,故答案为:.【题目点拨】此题主要考查了负指数幂法则以及绝对值的代数意义和零指数幂的法则、算术平方根的性质,正确利用法则化简各数是解题关键.14、1.1【解题分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12AB=1.1km【题目详解】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12故答案为:1.1.【题目点拨】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.15、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【题目详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【题目点拨】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、【分析】根据题意画出图形,然后利用某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可求出旗杆的高度.【题目详解】根据题意画出如下图形,有,则AC即为所求.设AB=x则解得∴故答案为10.5.【题目点拨】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.17、36°【解题分析】360°÷5=72°,180°-72°=108°,所以,正五边形每个内角的度数为108°,即可知∠A=108°,又知△ABE是等腰三角形,则∠ABE=(180°-108°)=36°.18、y=﹣x或y=-4x【解题分析】分析:直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.详解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(-3,4),设过点A′的正比例函数的解析式为:y=kx,则4=-3k,解得:k=-,则过点A′的正比例函数的解析式为:y=-x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),设过点A′的正比例函数的解析式为:y=k′x,则-4=k′,则过点A′的正比例函数的解析式为:y=-4x.故答案为y=﹣x或y=-4x.点睛:此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.三、解答题(共66分)19、(1)见解析;(2)1【分析】(1)由圆周角定理得出∠ABC=∠ADC,由已知得出∠ADC=∠AFB,证出CD∥BF,得出AB⊥BF,即可得出结论;(2)设⊙O的半径为r,连接OD.由垂径定理得出PD=PC=CD=,得出OP=r-1在Rt△OPD中,由勾股定理得出方程,解方程即可.【题目详解】解:(1)证明:∵弧AC=弧AC,∴∠ABC=∠ADC,∵∠AFB=∠ABC,∴∠ADC=∠AFB,∴CD∥BF,∵CD⊥AB,∴AB⊥BF,∵AB是圆的直径,∴直线BF是⊙O的切线;(2)解:设⊙O的半径为r,连接OD.如图所示:∵AB⊥BF,CD=2,∴PD=PC=CD=,∵BP=1,∴OP=r﹣1在Rt△OPD中,由勾股定理得:r2=(r﹣1)2+()2解得:r=1.即⊙O的半径为1.【题目点拨】本题考查切线的判定、勾股定理、圆周角定理、垂径定理以及勾股定理和平行线的判定与性质等知识,解题的关键熟练掌握圆周角定理和垂径定理.20、(1)见解析;(2);;(3)面积为.【分析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45°,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90°,证出∠AMF=∠NMG,证明△AMF≌△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出,求出AN=2,由勾股定理得出BN==4,由直角三角形的性质得出OM=OA=ON=AN=,OM⊥AN,证明△PAO∽△NAB,得出,求出OP=,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN=,由三角形面积公式即可得出结果.【题目详解】(1)证明:过点作于,作于,如图①所示:,四边形是正方形,,,,,四边形是正方形,,,,,,在和中,,;(2)解:在中,由(1)知:,,,,,在中,,,,解得:,在中,,在中,是的中点,,,,,,,即:,解得:,;(3)解:过点作于,如图③所示:,,,,,,,在和中,,,在等腰直角中,,,,,,的面积为.【题目点拨】本题是相似形综合题目,考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的判定与性质、直角三角形的性质、勾股定理、角平分线的性质等知识;本题综合性强,有一定难度,证明三角形相似和三角形全等是解题的关键.21、,.【解题分析】试题分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.试题解析:∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得,.考点:解一元二次方程-配方法.22、(1)当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)m为1时△PCD的面积最大,最大面积是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.【分析】(1)根据抛物线过原点和题目中的函数解析式可以求得m的值,并求出此时抛物线的解析式及对称轴和项点坐标;(2)根据题目中的函数解析式和二次函数的性质,可以求得m为何值时△PCD的面积最大,求得点C、D的坐标,由此求出△PCD的面积最大值;(3)根据题意抛物线能把线段AB分成1:2,存在两种情况,求出两种情况下线段AB与抛物线的交点,即可得到当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.【题目详解】(1)当y=﹣(x﹣1)2﹣m2+2m+1过原点(0,0)时,0=﹣1﹣m2+2m+1,得m1=0,m2=2,当m1=0时,y=﹣(x﹣1)2+1,当m2=2时,y=﹣(x﹣1)2+1,由上可得,当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)∵抛物线y=﹣(x﹣1)2﹣m2+2m+1,∴该抛物线的顶点P为(1,﹣m2+2m+1),当﹣m2+2m+1最大时,△PCD的面积最大,∵﹣m2+2m+1=﹣(m﹣1)2+2,∴当m=1时,﹣m2+2m+1最大为2,∴y=﹣(x﹣1)2+2,当y=0时,0=﹣(x﹣1)2+2,得x1=1+,x2=1﹣,∴点C的坐标为(1﹣,0),点D的坐标为(1+,0)∴CD=(1+)﹣(1﹣)=2,∴S△PCD==2,即m为1时△PCD的面积最大,最大面积是2;(3)将线段AB沿y轴向下平移n个单位A(2,3﹣n),B(5,3﹣n)当线段AB分成1:2两部分,则点(3,3﹣n)或(4,3﹣n)在该抛物线解析式上,把(3,3﹣n)代入抛物线解析式得,3﹣n=﹣(3﹣1)2﹣m2+3m+1,得n=m2﹣2m+6;把(4,3﹣n)代入抛物线解析式,得3﹣n=﹣(3﹣1)2﹣m2+3m+1,得n=m2﹣2m+1;∴n=m2﹣2m+6或n=m2﹣2m+1.【题目点拨】此题是二次函数的综合题,考查抛物线的对称轴、顶点坐标,最大值的计算,(3)是题中的难点,由图象向下平移得到点的坐标,再将点的坐标代入解析式,即可确定m与n的关系.23、(1)2000;(2)①售价是75元,②售价为85元,利润最大为3125元.【分析】(1)用每件利润乘以50件即可;
(2)每件售价降价x元,则每件利润为(100-60-x)元,销售量为(50+5x)件,它们的乘积为利润y,
①利用y=2625得到方程(100-60-x)(50+5x)=2625,然后解方程即可;
②由于y=(100-60-x)(50+5x),则可利用二次函数的性质确定最大利润值.【题目详解】解:(1)解:(1)该网店销售该商品原来一天可获利润为(100-60)×50=2000(元),
故答案为2000;(2)①解得或,又因尽量多增加销售量,故.售价是元.答:每件商品的售价应降价25元;②,当时,售价为元,利润最大为3125元.答:答:当该商品每件售价为85元时,该网店一天所获利润最大,最大利润值为3125元.【题目点拨】本题考查了二次函数的应用:在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.24、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由抛物线的解析式先求出点A,B的坐标,再证△AOC∽△COB,利用相似三角形的性质可求出CO的长;(2)先求出抛物线的解析式,再设出点D的坐标(m,m2﹣m﹣2),用含m的代数式表示出△BCD的面积,利用函数的性质求出其最大值;(3)分类讨论,分三种情况由平移规律可轻松求出点P的三个坐标.【题目详解】(1)在抛物线y=a(x+2)(x﹣4)中,当y=0时,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)将C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴抛物线解析式为:y=x2﹣x﹣2,如图1,连接OD,设D(m,m2﹣m﹣2),则S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年玻纤屋面防水布项目投资可行性研究分析报告
- 2025年电踏车项目投资可行性研究分析报告
- 有机化学原料的绿色生产与标准化考核试卷
- 2025年氨基酸生物肥料项目可行性研究报告
- 2025年中国自动扶梯行业市场深度研究及发展趋势预测报告
- 现代物流的信息化与数字化进程
- 生态环境保护与体育活动的结合创新
- 现代办公家具纹样设计的心理倾向分析
- 供应链金融创新应用考核试卷
- 服装批发市场区域品牌塑造与传播考核试卷
- 湖北省武汉市江汉区2023-2024学年七年级下学期期末数学试题
- 四肢创伤影像(X线)诊断
- 2023年湖北省襄阳市中考地理真题(含解析)
- 2023-2024学年统编版高中语文选择性必修下册古诗词诵读《客至》课件
- 城市道路施工作业区规范资料汇编
- DL-T5153-2014火力发电厂厂用电设计技术规程
- 冀人版科学六年级下册全册同步练习
- (高清版)JTGT 3365-02-2020 公路涵洞设计规范
- 静疗相关血管解剖知识课件
- 【苏科版】九年级物理下册教学计划(及进度表)
- 康复运动治疗技术
评论
0/150
提交评论