黄金比例市公开课获奖课件省名师优质课赛课一等奖课件_第1页
黄金比例市公开课获奖课件省名师优质课赛课一等奖课件_第2页
黄金比例市公开课获奖课件省名师优质课赛课一等奖课件_第3页
黄金比例市公开课获奖课件省名师优质课赛课一等奖课件_第4页
黄金比例市公开课获奖课件省名师优质课赛课一等奖课件_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GoldenRatio

DivineProportion,GoldenSection,PHI

1/81为何许多国家国旗图案都喜欢用五角星?中华人民共和国新西兰朝鲜新加坡2/81美妙五角星——毕达哥斯学派徽章黄金分割,是古希腊毕达哥斯学派从数学原理中发觉出来一个漂亮形式。普通来说,按黄金百分比组成事物都表现出友好和均衡。3/81TimelineofGoldenSection公元前6世纪古希腊毕达哥拉斯学派已研究过正五边形和正十边形作图,所以可推断他们已知道与此相关黄金分割问题。Phidias(490–430BC)madetheParthenonstatuesthatseemtoembodythegoldenratio.Plato(427–347BC),inhisTimaeus,describesfivepossibleregularsolids(thePlatonicsolids,thetetrahedron,cube,octahedron,dodecahedronandicosahedron),someofwhicharerelatedtothegoldenratio.4/81公元前4世纪,古希腊数学家欧多克索斯第一个系统地研究这个问题,他建立了百分比理论。

Euclid(c.325–c.265BC),inhisElements,gavethefirstrecordeddefinitionofthegoldenratio,whichhecalled,astranslatedintoEnglish,"extremeandmeanratio".

中国古代称黄金分割为“弦分割”。5/81Fibonacci(1170–1250)mentionedthenumericalseriesnownamedafterhiminhisLiberAbaci;theFibonaccisequenceiscloselyrelatedtothegoldenratio.LucaPacioli(1445–1517)definesthegoldenratioasthe"divineproportion"inhisDivinaProportione.JohannesKepler(1571–1630)describesthegoldenratioasa"preciousjewel":"Geometryhastwogreattreasures:oneistheTheoremofPythagoras,andtheotherthedivisionofalineintoextremeandmeanratio;thefirstwemaycomparetoameasureofgold,thesecondwemaynameapreciousjewel."ThesetwotreasuresarecombinedintheKeplertriangle.6/81CharlesBonnet(1720–1793)pointsoutthatinthespiralphyllotaxisofplantsgoingclockwiseandcounter-clockwisewerefrequentlytwosuccessiveFibonacciseries.MartinOhm(1792–1872)isbelievedtobethefirsttousethetermgoldenerSchnitt(goldensection)todescribethisratio,in1835.EdouardLucas(1842–1891)givesthenumericalsequencenowknownastheFibonaccisequenceitspresentname.MarkBarr(20thcentury)suggeststheGreekletterphi(φ),theinitialletterofGreeksculptorPhidias'sname,asasymbolforthegoldenratio.RogerPenrose(b.1931)discoveredasymmetricalpatternthatusesthegoldenratiointhefieldofaperiodictilings,whichledtonewdiscoveriesaboutquasicrystals.7/811953年,美国数学家J.基弗首先提出优选法optimizationmethod中黄金分割法优选法,是以数学原理为指导,用最可能少试验次数,尽快找到生产和科学试验中最优方案一个科学试验方法。1970-80年代,中国数学家华罗庚在中国推广,取得很大成绩。8/81Goldentriangle,pentagonandpentagram

9/815×88×1313×2121×34①②③④⑤⑥⑦⑧5/8=0.6258/13≈0.61513/21≈0.61921/34≈0.618以下矩形中,哪些比较匀称?10/8111/8112/81国旗、明信片、报纸、邮票、书本、桌面、电视屏幕、窗户、房间等等,都常被设计成靠近于黄金矩形。报幕员站在舞台宽度0.618处。13/81GoldenRectangle14/81Goldenangle15/81Leafarrangements1/2elm,linden,lime,grasses1/3beech,hazel,grasses,blackberry2/5oak,cherry,apple,holly,plum,commongroundsel3/8poplar,rose,pear,willow5/13pussywillow,almond

许多植物叶片、枝杈或瓣都按黄金分割角度伸展互不重合,有利于光合作用,通风和采光能到达最好效果,这是生物进化结果。16/81LeonardoFibonacci

斐波那契(约1175-约1240)是丢番图(Diophantos)与费尔马(PierredeFermat)之间欧洲最出色数论学家,出生在意大利比萨。在著作《算盘书》(LiberAbaci)中,引进了印度阿拉伯数码(包含0)及其演算法则。数论方面他在丢番图方程和同余方程方面有主要贡献。17/81Fibonacci’sSeries《算盘书》“兔子问题”:假设一对兔子每个月能生一对小兔(一雄一雌),而每对小兔在它出生后第三个月,又能开始生小兔,假如没有死亡,由一对刚出生小兔开始,一年后一共会有多少对兔子?18/81将问题普通化后答案就形成著名斐波那契数列斐波那契数列:1,1,2,3,5,8,13,21,34,55,89,144,233,……

从第三项开始每一项都是数列中前两项之和。第n个月时兔子数就是斐波那契数列第n项。19/81FibonaccinumbersandtheGoldenNumber20/81FibonacciNumbers,theGoldenSectionandTrees

著名“鲁德维格定律”是F数列在植物学中应用。数学家泽林斯基在一次国际数学会上指出,树年分枝数目就是F数列,即枝数增加遵照F数列规律.21/81英国T·W·汤姆森爵士指出.假如一棵树一直保持幼时长高和长粗百分比,那它终将会因自己“细高个子”而翻倒;所以它选择了长高和长粗最正确百分比:0.618.禾本植物(如小麦、水稻)茎节,可看到其相邻两节之比为1∶1.618或1∶2.472(依品种不一样而异).血管粗细比:1∶1.618。22/81Pinecones许多植物叶片、花瓣、果粒数与F数列相吻合.松果上鳞片分布都与F数列相关23/81Petalsonflowers3petals:lily,iris

5petals:buttercup,wildrose,larkspur,columbine(aquilegia)

8petals:delphiniums

13petals:ragwort,cornmarigold,cineraria,somedaisies

21petals:aster,black-eyedsusan,chicory

34petals:plantain,pyrethrum

55,89petals:michaelmasdaisies,theasteraceaefamily.24/81Petalsonflowers菲氏数过月季花,为21瓣。达尔文数过波斯菊恰好144瓣,其中55瓣和89。米切尔马斯花,157瓣,真中13瓣与另外144瓣相比,尤其长且弯曲向内,他认为157为F数列中13和144合成。向日葵外缘花瓣分为55和89瓣两种不一样形态。瓣在形态上有显著差异:一个长丝卷曲向内,一个平展舒放向外。25/81FibonacciRectangles26/81FibonacciSpiralsAlogarithmicspiral,equiangularspiralorgrowthspiralisaspecialkindofspiralcurvewhichoftenappearsinnature.ThelogarithmicspiralwasfirstdescribedbyDescartesandlaterextensivelyinvestigatedbyJakobBernoulli,whocalleditSpiramirabilis,"themarvelousspiral".上帝之眼27/81Cutawayofanautilusshellshowingthechambersarrangedinanapproximatelylogarithmicspiral海洋鹦鹉螺、蜗牛,一些动物角质体上,有甲壳软体动物身上,都有黄金螺线28/81AlowpressureareaoverIcelandshowsanapproximatelylogarithmicspiralpatternThearmsofspiralgalaxiesoftenhavetheshapeofalogarithmicspiral,heretheWhirlpoolGalaxyRomanescobroccoli,showingfractalforms蕨类植物琴状梢头,其螺线为黄金螺线29/81FibonacciPhyllotaxis30/81Flowers,VegetablesandFruit31/81Seedheads向日葵不但葵盘上有一左一右黄金螺线,而且每朵小花或果花上也有两条黄金螺线;更奇异是,每套螺线总数都符合F数列:如有21条左旋,则必有13条石旋,其总数必为34条.32/81FibonacciSpirals33/8134/81ManandGoldenSection菲波那契大量调查后,人体肚脐以下长度与身高之比比值0.618,被视为“标准美人”。芭蕾舞蹈员身形合黄金百分比,在人体绘画和雕塑等应用,如古希腊神话中太阳神阿波罗形象,女神维纳斯塑像。肚脐以上部分黄金分割点在咽喉,肚脐以下部分黄金点在膝关节,上肢部分黄金点在肘关节.人体肚脐还是胎儿营养供给,同时也是医疗效果黄金点。35/8136/81普通人腰与脚底距离占身高0.58,而下肢较长人显得身材颀长,更有美感。踮起脚尖能够增加腰与脚底距离,使得这一距离与身高比值更靠近0.618。给人以更为优美艺术形象.37/81人体最感舒适温度约23℃(气温)精神愉快时,人脑电波频率下限(8赫兹)与上限(12.9赫兹)之比,恰为黄金数。38/81FibonacciFingers?2handseachofwhichhas...5fingers,eachofwhichhas...3partsseparatedby...2knuckles39/81GoldenSectioninProductionandScienceResearch1953年美国基弗在首先提出来,1970年以后在中国进行了推广。为了到达优质、高产、低耗等目标,逐步发展起来优选法中0.618法(黄金分割法),在生产实践和科学试验中有广泛应用。40/81GoldenSectioninArchitectandArt世界上许多美好建筑物都是按黄金分割百分比建造.古希腊雅典女神庙;法国埃菲尔铁塔。意大利著名画家达·芬奇在他作品中经常选择0.618∶1百分比关系。从声学角度来看,管弦乐器在黄金分割点上奏出声音最悦耳,许多著名音乐作品,其中高潮出现地方大多和黄金分割点靠近。41/8142/81TheancientEgyptianswerethefirsttousemathematicsinart.Itseemsalmostcertainthattheyascribedmagicalpropertiestothegoldensection(goldenratio,divineproportion,phi)andusedinthedesignoftheirgreatpyramids.

43/81IfwetakeacrosssectionoftheGreatPyramid,wegetarighttriangle,theso-calledEgyptianTriangle.Theratiooftheslantheightofthepyramid(hypotenuseofthetriangle)tothedistancefromgroundcenter(halfthebasedimension)is1.61804...whichdiffersfromphibyonlyoneunitinthefifthdecimalplace.Ifweletthebasedimensionbe2units,thenthesidesoftherighttriangleareintheproportion1:sqrt(phi):phiandthepyramidhasaheightofsqrt(phi).44/81TheMedievalbuildersofchurchesandcathedralsapproachedthedesignoftheirbuildingsinmuchthesamewayastheGreeks.Agoodgeometricstructurewastheiraim.Insideandout,theirbuildingswereintricateconstructionsbasedonthegoldensection.

45/8146/81Pythagoras(560-480BC),theGreekgeometer,wasespeciallyinterestedinthegoldensection,andprovedthatitwasthebasisfortheproportionsofthehumanfigure.Heshowedthatthehumanbodyisbuiltwitheachpartinadefinitegoldenproportiontoalltheotherparts.

47/81Pythagoras'discoveriesoftheproportionsofthehumanfigurehadatremendouseffectonGreekart.Everypartoftheirmajorbuildings,downtothesmallestdetailofdecoration,wasconstructeduponthisproportion.48/81TheParthenonwasperhapsthebestexampleofamathematicalapproachtoart.

49/81Onceitsruinedtriangularpedimentisrestored,...50/81theancienttemplefitsalmostpreciselyintoagoldenrectangle.51/81Furtherclassicsubdivisionsoftherectanglealignperfectlywithmajorarchitecturalfeaturesofthestructure.52/8153/81MathematicianshadthecontributionoftheGreeksinmindwhentheychristenedtheratio"phi"intributetothegreatPhidias,whousedtheproportionfrequentlyinhissculpture.

54/8155/8156/81Butwhilstinarchitecturetherewasthisverygreatinterestingeometry,artistsseemedtohavelostallinterestinthegoldensectionandinmathematicsasawhole.Inthe16thCentury,LucaPacioli(1445-1514),geometerandfriendofthegreatRenaissancepainters,rediscoveredthe"goldensecret".Hispublicationdevotedtothenumberphi,DivinaProportione,wasillustratedbynolessanartistthan...57/81Hehadearlier,likePythagoras,madeaclosestudyofthehumanfigureandhadshownhowallitsdifferentpartswererelatedbythegoldensection.

58/8159/8160/81Leonardo'sunfinishedcanvasSaintJeromeshowsthegreatscholarwithalionlyingathisfeet.Agoldenrectanglefitssoneatlyaroundthecentralfigurethatitisoftensaidtheartistdeliberatelypaintedthefiguretoconformtothoseproportions.KnowingLeonardo'sloveof"geometricalrecreations"ashedescribedthem,thisisquitelikely.61/81LeonardodaVinci(1451-1519).Leonardohadforalongtimedisplayedanardentinterestinthemathematicsofartandnature.62/81NoticehowtheclassicsubdivisionoftherectanglelinesupwithSt.Jerome'sextendedarm.63/81ThegoldenrectanglesinDaVinci'sMonaLisaabound.VisitthewebpageMonaLisaApplettoaddgoldenrectanglesinteractivelytohisfamousmasterpiece.64/8165/81Michelangelo'sHolyFamily...isnotableforitspositioningoftheprincipalfiguresinalignmentwithapentagramorgoldenstar.66/81Hackingbacktoclassicalthemesandtechniquesfortheirinspiration,artistsoftheRenaissancelikeMichelangelo(1475-1564)andRaphael(1483-1530)oncemorebegantoconstructtheircompositionsonthegoldenratio.TheproportionsofMichelangelo'sDavidconformtothegoldenratiofromthelocationofthenavelwithrespecttotheheighttotheplacementofthejointsinthefingers.67/81Raphael'sCrucifixion...isanotherwell-knownexample.Theprincipalfiguresoutlineagoldentriangle...68/81whichcanbeusedtolocateoneofitsunderlyingpentagrams.69/81Thisself-portraitbyRembrandt(1606-1669)...isanexampleoftriangularcomposition-holdingtogetheranintricatesubjectwithinthreestraightlines.Thedifferentlengthsofthesidesaddalittlevariety.Aperpendicularlinefromtheapexofthe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论