江西省吉安市五斗江中学高一数学文联考试卷含解析_第1页
江西省吉安市五斗江中学高一数学文联考试卷含解析_第2页
江西省吉安市五斗江中学高一数学文联考试卷含解析_第3页
江西省吉安市五斗江中学高一数学文联考试卷含解析_第4页
江西省吉安市五斗江中学高一数学文联考试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市五斗江中学高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的取值范围是()A.(﹣∞,)∪(1,+∞) B.(,1)C.(﹣,) D.(﹣∞,﹣)∪(,+∞)参考答案:B【考点】对数函数的图象与性质;函数单调性的性质.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.2.函数在上递减,那么在上(

).A.递增且有最大值

B.递减且无最小值

C.递增且无最大值

D.递减且有最小值参考答案:A令,是的递减区间,即,是的递增区间,即递增且无最大值.3.函数的图象经过变换得到的图象,这个变换是

A.向左平移个单位

B.向右平移个单位

C.向左平移个单位

D.向右平移个单位参考答案:A

4.若函数与的定义域均为,则(

)A.与与均为偶函数

B.为奇函数,为偶函数C.与与均为奇函数

D.为偶函数,为奇函数参考答案:D由于,故是偶函数,由于,故是奇函数,故选D.5.设函数,则的值为A.—1

B.0

C.1

D.2参考答案:C.故选C.6.已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集是()A.(﹣3,﹣1) B.(﹣1,1)∪(1,3) C.(﹣3,0)∪(3,+∞) D.(﹣3,1)∪(2,+∞)参考答案:B【考点】奇偶性与单调性的综合.【专题】计算题;函数的性质及应用.【分析】先确定奇函数f(x)在(0,+∞)上单调递减,且f(﹣2)=0,再将不等式(x﹣1)f(x﹣1)>0等价于x﹣1>0,f(x﹣1)>0或x﹣1<0,f(x﹣1)<0,即可求得结论.【解答】解:∵奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,∴奇函数f(x)在(0,+∞)上单调递减,且f(﹣2)=0,不等式(x﹣1)f(x﹣1)>0等价于x﹣1>0,f(x﹣1)>0或x﹣1<0,f(x﹣1)<0即或∴1<x<3或﹣1<x<1∴不等式(x﹣1)f(x﹣1)>0的解集是(﹣1,1)∪(1,3)故选B.【点评】本题考查函数单调性与奇偶性的结合,考查解不等式,正确确定函数的单调性是关键.7.在三棱锥中,侧棱两两垂直,的面积分别为,则该三棱锥外接球的表面积为(

)A.

B.

C.

D.参考答案:B略8.(

)A.11

B.7

C.

0

D.6参考答案:B,故选B.

9.某林业局为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如右),那么估计在这片经济林中,底部周长不小于110cm林木所占百分比为(

).

A.70%

B.60%

C.40%

D.30%参考答案:D10.(5分)如图,三棱柱ABC﹣A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为() A. 2:3 B. 1:1 C. 3:2 D. 3:4参考答案:B考点: 棱柱、棱锥、棱台的体积.专题: 空间位置关系与距离.分析: 利用特殊值法,设三棱柱ABC﹣A1B1C1是正三棱柱,AC=1,AA1=2,由此能求出平面BDC1分此棱柱两部分体积的比.解答: 设三棱柱ABC﹣A1B1C1是正三棱柱,AC=1,AA1=2,棱锥B﹣DACC1的体积为V1,由题意得V1=××1×=,又三棱柱ABC﹣A1B1C1的体积V=sh==,(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.故选:B.点评: 本题考查平面BDC1分此棱柱两部分体积的比的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若存在正整数满足:,那么我们把叫做关于的“对整数”,则当时,“对整数”共有_______________个参考答案:212.已知函数的值域为,则的取值范围是________参考答案:13.等比数列{an}中,若,,则

.参考答案:

32

14.(5分)已知函数f(x)是定义为在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,都有f(x﹣1)≤f(x+1)成立,则实数a的取值范围是

.参考答案:[﹣,]考点:函数恒成立问题.专题:计算题;数形结合;分类讨论;函数的性质及应用.分析:由于当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2).可得当0≤x≤a2时,f(x)=﹣x;当a2<x≤2a2时,f(x)=﹣a2;当x>3a2时,f(x)=x﹣3a2.画出其图象.由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象.由于x∈R,f(x﹣1)≤f(x+1),即有?x∈R,f(x﹣2)≤f(x),可得6a2≤2,解出即可.解答:∵当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2).∴当0≤x≤a2时,f(x)=(a2﹣x+2a2﹣x﹣3a2)=﹣x;当a2<x≤2a2时,f(x)=﹣a2;当x>3a2时,f(x)=x﹣3a2.画出其图象.由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象,与x>0时的图象关于原点对称.∵?x∈R,f(x﹣1)≤f(x+1),即有?x∈R,f(x﹣2)≤f(x),∴6a2≤2,解得﹣≤a.∴实数a的取值范围为[﹣,].故答案为:[﹣,].点评:本题考查了函数奇偶性、周期性,考查了分类讨论的思想方法,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.15.已知函数f(x)=x+sinπx﹣3,则的值为.参考答案:﹣8062【考点】函数的值.【专题】转化思想;转化法;函数的性质及应用.【分析】根据条件求出f(x)+f(2﹣x)=﹣4,然后利用倒序相加法进行求解即可.【解答】解:∵函数f(x)=x+sinπx﹣3,∴f(2﹣x)=2﹣x+sin(2π﹣πx)﹣3=2﹣x﹣sinπx﹣3,∴f(x)+f(2﹣x)=﹣4,∴设=S,则f()+…+f()=S,两式相交得2S=2016×(f()+f())=4031×(﹣4),即S=﹣8062,故答案为:﹣8062.【点评】本题主要考查函数值的计算,根据条件求f(x)+f(2﹣x)=﹣4,意见利用倒序相加法是解决本题的关键.16.已知f(x)=(x+1)∣x-1∣,若关于x的方程f(x)=x+m有三个不同的实数解,则实数m的取值范围是

.参考答案:(-1,)17.指数函数的图像经过点,那么

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知全集U=R,集合,求(1)

(2)

(3)参考答案:略略19.已知方程(Ⅰ)若此方程表示圆,求实数m的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线相交于M、N两点,且OM⊥ON(O为坐标原点)求实数m的值;(Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程.参考答案:解.(Ⅰ)圆的方程可化为,∴(Ⅱ)设,,则,,∵,∴∴①由得所以,代入①得(Ⅲ)以为直径的圆的方程为即所以所求圆的方程为.

20.(本题满分12分)已知,.试求(Ⅰ)的值;(Ⅱ)的值.参考答案:解(Ⅰ)由,,

,

…………2分

=.

…………4分

(Ⅱ)∵,

…………8分∴

=

…12分略21.(本小题满分12分)已知函数.(Ⅰ)当时,解不等式:;(Ⅱ)若不等式对恒成立,求实数的取值范围.参考答案:(Ⅰ)当时得,所以不等式的解集为.--------6分

(Ⅱ)的解集为∴

-------------------10分∴.-------------------12分22.已知a,b,c分别是△ABC的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论