2022年近三年高考数学立体几何选择、填空题汇编_第1页
2022年近三年高考数学立体几何选择、填空题汇编_第2页
2022年近三年高考数学立体几何选择、填空题汇编_第3页
2022年近三年高考数学立体几何选择、填空题汇编_第4页
2022年近三年高考数学立体几何选择、填空题汇编_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年近三年高考数学立体几何选择、填空题汇编一.选择题(共36小题)1.底面积为2π,侧面积为6π的圆锥的体积是()A.8πB.8C.2πD.42.如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()

A.23B.24C.26D.273.如图正方体ABCD-AB1C1D1中,P、Q、R、S分别为棱AB、BC、BB1、CD的中点,联结A1S,B1D.空间任意两点M、N,若线段MN上不存在点在线段A1S、B1D上,则称MN两点可视,则下列选项中与点D1可视的为()A.点PB.点BC.点RD.点Q4.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.22πB.8πC.22D.165.已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3B.πC.2πD.3π6.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤33,则该正四棱锥体积的取值范围是()A.[18,814B.[274,81C.[274,64D.[18,27]7.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A.1B.1C.D.8.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.209.在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则()A.平面B1EF⊥平面BDD1B.平面B1EF⊥平面A1BDC.平面B1EF∥平面A1ACD.平面B1EF∥平面A1C1D10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若=2,则=()11.已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π12.上海海关大楼的顶部为逐级收拢的四面钟楼,如图,四个大钟分布在四棱柱的四个侧面,则每天0点至12点(包含0点,不含12点)相邻两钟面上的时针相互垂直的次数为()A.0B.2C.4D.1213.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:A.3πB.4πC.9πD.12π14.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1-cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%15.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+123B.282C.56D.16.某四面体的三视图如图所示,该四面体的表面积为()

17.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()18.如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B119.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.4220.已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为()21.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.22.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.πB.πC.πD.π23.已知正三棱锥P-ABC,AB=2,PA=3,D为PC中点,则三棱锥D-ABC的体积为()24.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π25.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+3B.6+23C.12+3D.12+2326.如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+2327.在棱长为10的正方体ABCD-A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线交正方体于P、Q两点,则Q点所在的平面是()A.AA1B1BB.BB1C1CC.CC1D1DD.ABCD28.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H29.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.7B.14C.3D.630.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()31.已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π32.如图,已知正三棱柱ABC-A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F-BC-A的平面角为γ,则()A.α≤β≤γB.β≤α≤γC.β≤γ≤αD.α≤γ≤β33.在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则()A.AB=2ADB.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°34.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°35.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()36.经过点(1,-1,3)且与平面2x+y-z+4=0平行的平面方程为()A.2x+y-z+2=0B.2x+y+z-6=0C.2x+y+z-4=0D.2x+y-z-3=0二.填空题(共24小题)37.在正三棱柱ABC-A1B1C1中,AB=1,AA1=,则异面直线AB1与BC1所成角的大小为

.38.已知圆柱的高为4,底面积为9π,则圆柱的侧面积为

.39.三棱锥P-ABC中,PA⊥底面ABC,且PA=3,AB=CB=2,AC=22,则侧面PBC的面积是

.40.已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则△ABC的面积的取值范围为

.41.已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为.42.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为

(写出符合要求的一组答案即可).

43.已知圆柱的底面半径为1,高为2,则圆柱的侧面积为.44.在空间直角坐标系中,已知点A(1,0,2),B(1,1,-1),则经过点A且与直线AB垂直的平面方程为

.45.已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为.46.已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是.47.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是

cm3.48.如图,在三棱锥P-ABC的平面展开图中,AC=1,AB=AD=3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.49.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为

.50.已知平面α截球O的球面所得圆的面积为π,O到α的距离为3,则球O的表面积为.51.已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.52.已知l,m是平面α外的两条不同直线.给出下列三个论断:

①l⊥m;②m∥α;③l⊥α.

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.53.如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是

.54.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为

g.55.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.

56.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为

.57.已知直四棱柱A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论