柔性材料与可穿戴电子传感器前景资料报告x_第1页
柔性材料与可穿戴电子传感器前景资料报告x_第2页
柔性材料与可穿戴电子传感器前景资料报告x_第3页
柔性材料与可穿戴电子传感器前景资料报告x_第4页
柔性材料与可穿戴电子传感器前景资料报告x_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柔性材料与可穿戴电子传感器前景资料报告通过这个学期的学习我对柔性材料和电子传感器有了一些了解。一:柔性与柔性材料柔性材料的定义柔性英文为Flexible,也可解释为挠性,是相对刚性而言的一种物体特性。挠性是指物体受力后变形,作用力失去之后物体自身不能恢复原来形状的一种物理性质。而刚性物体受力后,在宏观来看其形状可视为没有发生改变。弹性是指物体受力后变形,作用力失去之后物体自身能恢复原来形状的一种物理性质。其侧重物体的变形结果,而挠性侧重物体自身性质。因而柔性材料是指可伸缩,弯曲,扭转,变形而不失去性能的材料。通过这一性能我们可以得到许多延展性及曲度很高的电子材料。在查阅资料的过程中我还了解到了一种与本课题有关的但是处于初步阶段的电子技术一一柔性电子技术。柔性材料的发展前景柔性电子可概括为是将有机/无机材料电子器件制作在柔性/可延性塑料或薄金属基板上的新兴电子技术,以其独特的柔性/延展性以及高效、低成本制造工艺,在信息、能源、医疗、国防等领域具有广泛应用前景,如柔性电子显示器、有机发光二极管OLED、印刷RFID、薄膜太阳能电池板、电子用表面粘贴(SkinPatches)等。与传统IC技术一样,制造工艺和装备也是柔性电子技术发展的主要驱动力。柔性电子制造技术水平指标包括芯片特征尺寸和基板面积大小,其关键是如何在更大幅面的基板上以更低的成本制造出特征尺寸更小的柔性电子器件。柔性电子技术有可能带来一场电子技术革命,引起全世界的广泛关注并得到了迅速发展。美国《科学》杂志将有机电子技术进展列为2000年世界十大科技成果之一,与人类基因组草图、生物克隆技术等重大发现并列。美国科学家艾伦黑格、艾伦•马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。西方发达国家纷纷制定了针对柔性电子的重大研究计划,如美国FDCASU计划、日本TRADIM计划、欧盟第七框架计划中PolyApply和SHIFT计划等,仅欧盟第七框架计划就投入数十亿欧元的研发经费,重点支持柔性显示器、聚合物电子的材料/设计/制造/可靠性、柔性电子器件批量化制造等方面基础研究。在最近的10年间,康奈尔大学、普林斯顿大学、哈佛大学、西北大学、剑桥大学等国际著名大学都先后建立了柔性电子技术专门研究机构,对柔性电子的材料、器件与工艺技术进行了大量研究。柔性电子技术同样引起了我国研究人员的高度关注与重视,在柔性电子有机材料制备、有机电子器件设计与应用等方面开展了大量的基础研究工作,并取得了一定进展。中国科学院长春应用化学研究所、中国科学院化学研究所、中国科学技术大学、华南理工大学、清华大学、西安电子科技大学、天津大学、浙江大学、武汉大学、复旦大学、南京邮电大学、上海大学等单位在有机光电(高)分子材料和器件、发光与显示、太阳能电池、场效应管、场发射、柔性电子表征和制备、平板显示技术、半导体器件和微图案加工等方面进行了颇有成效的研究。近年来,华中科技大学在RFID封装和卷到卷制造、厦门大学在静电纺丝等方面取得了研究进展。在SpringerLink上也有着一些相关的文献。・二:可穿戴的电子传感器随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一。传感器在人体健康监测方面发挥着至关重要的作用。近年来,人们已经在可穿戴可植入传感器领域取得了显著进步,例如利用电子皮肤向大脑传递皮肤触觉信息,利用三维微电极实现大脑皮层控制假肢,利用人工耳蜗恢复病人听力等。然而,实现柔性可穿戴电子传感器的高分辨、高灵敏、快速响应、低成本制造和复杂信号检测仍然是一个很大的挑战。性可穿戴电子传感器机械力信号转换有效地将外部刺激转化为电信号是柔性可穿戴电子传感器监测身体健康状况的关键技术。柔性可穿戴电子传感器的信号转换机制主要分为压阻、电容和压电三大部分。

WillsForetPi^oresiitkily L'ax^ciliince Pie^clcciricih TriboeleclricityWillsForetPi^oresiitkily L'ax^ciliince Pie^clcciricih Triboeleclricity压阻:压阻传感器可以将外力转换成电阻的变化(与施加压力的平方根成正比),进而可以方便地用电学测试系统间接探测外力变化。而导电物质间导电路径的变化是获得压阻传感信号的常见机理。由于其简单的设备和信号读出机制,这类传感器得到广泛应用。电容:电容是衡量平行板间容纳电荷能力的物理量。传统的电容传感器通过改变正对面积s和平行板间距d来探测不同的力,例如压力,剪切力等。电容式传感器的主要优势在于其对力的敏感性强,可以实现低能耗检测微小的静态力。鲍哲楠等在弹性基底上制备了电容型透明可拉伸的碳纳米管传感器,对压力和拉力同时有响应。压电:压电材料是指在机械压力下可以产生电荷的特殊材料。这种压电特性是由存在的电偶极矩导致的。电偶极矩的获得是靠取向的非中心对称晶体结构变形,或者孔中持续存在电荷的多孔驻极体。压电系数是衡量压电材料能量转换效率的物理量,压电系数越高,能量转换的效率就越高。高灵敏,快速响应和高压电系数的压电材料被广泛应用于将压力转换为电信号的传感器。柔性可穿戴电子的常用材料有机材料:典型的场效应晶体管是由源极、漏极、栅极、介电层和半导体层五部分构成。根据多数载流子的类型可以分为p型(空穴)场效应晶体管和n型(电子)场效应晶体管。传统上用于场效应晶体管研究p型聚合物材料主要是噻吩类聚合物,其中最为成功的例子便是聚(3-己基噻吩)(P3HT)体系。萘四酰亚二胺(NDI)和花四酰亚二胺(PDI)显示了良好的n型场效应性能,是研究最为广泛的n型半导体材料,被广泛应用于小分子n型场效应晶体管当中。通常晶体管参数有载流子迁移率、运行电压和开/关电流比等。与无机半导体结构相比,有机场效应晶体管(OFET)具有柔性高和制备成本低的优点,但也有载流子迁移率低和操作电压大的缺点。近来,鲍哲楠等设计了一种具有更高噪声限度的逻辑电路。通过优化掺杂厚度或浓度,基于n型和p型碳纳米管晶体管的设计可用来调节阈值电压。碳材料:柔性可穿戴电子传感器常用的碳材料有碳纳米管和石墨烯等。碳纳米管具有结晶度高、导电性好、比表面积大、微孔大小可通过合成工艺加以控制,比表面利用率可达100%的特点。石墨烯具有轻薄透明,导电导热性好等特点。在传感技术、移动通讯、信息技术和电在碳纳米管的应用上,Chu等利用多臂碳纳米管和银复合并通过印刷方式得到的导电聚合物传感器,在140%的拉伸下,导电性仍然高达20S-cm-1在碳纳米管和石墨烯的综合应用上,Lee等制备了可以高度拉伸的透明场效应晶体管,其结合了石墨烯/单壁碳纳米管电极和具有褶皱的无机介电层单壁碳纳米管网格通道。由于存在褶皱的氧化铝介电层,在超过一千次20%幅度的拉伸-舒张循环下,没有漏极电流变化,显示出了很好的可持续性。柔性电子传感器的印刷制造与传统自上而下的光刻技术相比,印刷电子技术拥有弯曲与拉伸性好、可以在柔性基底大规模制备、加工设备简单、成本低和污染小等优点。通过调控墨水、基材等打印条件,成功制备了一系列特殊结构和图案:利用“咖啡环”现象制备线宽可达5〃m的金属纳米粒子图案;提出了一种通过控制液膜破裂实现了多种纳米粒子大面积精确组装的普适方法,这种新型图案化技术可以简便地进行纳米粒子微、纳米尺度图案的精确组装,可以通过“印刷”方式大面积制备纳米粒子组装的精细图案和功能器件,乃至实现单个纳米粒子的组装与图案化;通过喷墨打印技术构筑微米尺度的电极图案作为“模板”,控制纳米材料的组装过程成功制备了最高精度可达30nm的图案,并实现了柔性电路的应用。这种新型的图案化技术非常简便地实现了功能纳米材料的微纳米精确图案化组装,在过程中完全避免了传统的光刻工艺,这种“全增材制造”的方法通过“先打印,再印刷”的方式,能够大面积制备纳米材料组装的精细图案和功能器件;利用特殊图案化硅柱阵列为模板制备了周期与振幅可控的曲线阵列,真空蒸镀上金电极,得到对微小形变有稳定电阻变化的传感器芯片。可穿戴传感器的应用可穿戴传感器除了具有压力传感功能,还具有现实和潜在应用的多种功能,体温和脉搏检测、表情识别和运动监测等。温度检测:人体皮肤对温度的感知帮助人们维持体内外的热量平衡。电子皮肤的概念最早由Rogers等提出,由多功能二极管、无线功率线圈和射频发生器等部件组成。这样的表皮电子对温度和热导率的变化非常敏感,可以评价人体生理特征的变化,比如皮肤含水量,组织热导率,血流量状态和伤口修复过程。为了提高空间分辨率、信噪比和响应速度,有源矩阵设计成为了最优选择之一。Ha等制备了包含单壁碳纳米管薄膜晶体管的,可拉伸的聚苯胺纳米纤维温度传感器有源矩阵。其展示了1.0%・℃-1的高电阻灵敏性,在15到45℃范围内得到了1.8s的响应时间,在双向拉伸30%下依然保持稳定。脉搏检测:可穿戴个人健康监护系统被广泛认为是下一代健康监护技术的核心解决方案。监护设备不断地感知、获取、分析和存储大量人体日常活动中的生理数据,为人体的健康状况提供必要的、准确的和长期的评估和反馈。在脉搏监测领域,可穿戴传感器具有以下应用优势:(1)在不影响人体运动状态的前提下长时间的采集人体日常心电数据,实时的传输至监护终端进行分析处理;(2)数据通过无线电波进行传输,免除了复杂的连线。可以粘附在皮肤表面的电学矩阵在非植入健康监测方面具有明显优势,而且超轻超薄,利于携带。最近,鲍哲楠等发展了一种基于微毛结构的柔性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论