




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市2022年中考数学试题及答案一、选择题(本大题共10小題,每小题3分,共30分)1、有理数-12的倒数是()BA、-2B、2C、12D、-122、下列四个图案中,轴对称图形的个数是()CA、1B、2C、3D、43、将代数式x2+4x-1化成(x+p)2+q的形式()CA、(x-2)2+3B、(x+2)2-4C、(x+2)2-5D、(x+2)2+44、如图.位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投彩三角形的对应边长为()BA、8cmB、20cmC、D、10cm5、有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设7个获奖名额.某同学知进自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()CA、众数B、方差C、中位数D、平均数6、对于非零的两个实数a、b,规定a⊗b=1b-1a.若1⊗(x+1)=1,则x的值为()DA、32B、13C、12D、-127、如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中相似三角形有()BA、1对B、2对C、3对D、4对8、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()DA、B、C、D、9、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是()CA、1B、-1C、1或-1D、210、图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个n×n的近似正方形图案.当得到完整的菱形共181个时,n的值为()DA、7B、8C、9D、10二、填空题(本大題共6小題,每小題4分,共24)11、已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A,结果得x2+12x,则B+A=2x3+x2+2x12、如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是50°13、若等式(x3-2)0=1成立,则x的取值范围是x>6,14、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.15、请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.16、如图,双曲线y=2x(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得AB′C,B′点落在OA上,则四边形OABC的面积是2.三、解答题(共66分)17、计算:12-(12)-1-|2-23|.考点:;负整数指数幂.专题:.分析:将12化为最简二次根式,利用负整数指数的意义化简(12)-1,判断2-23的符号,去绝对值.解答:解:原式=23-2-(23-2)=23-2-23+2=0.点评:本题考查了二次根式的混合运算,负整数指数幂的意义.关键是理解每一个部分运算法则,分别化简.18、解不等式组.并把解集在数轴上表示出来.{x-32+3≥x+1①1-3(x-1)<8-x②.考点:解一元一次不等式组;.专题:计算题;.分析:先解每一个不等式,再求解集的公共部分即可.解答:解:不等式①去分母,得x-3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1-3x+3<8-x,移项,合并得x>-2,∴不等式组的解集为:-2<x≤1.数轴表示为:点评:本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分.19、如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.考点:旋转的性质;;等边三角形的判定;.专题:几何图形问题.分析:根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,根据图形求出旋转的角度,即可得出三角形的形状.解答:解:△PCD绕点P顺时针旋转60°得到△PEA,PD的对应边是PA,CD的对应边是EA,线段PD旋转到PA,旋转的角度是60°,因此这次旋转的旋转角为60°,即∠APD为60°,∴△PAD是等边三角形,∴∠DAP=∠PDA=60°,∴∠PDC=∠PAE=30°,∠DAE=30°,∴∠PAB=30°,即∠BAE=60°,又∵CD=AB=EA,∴△ABE是等边三角形,故答案为等边三角形.点评:本题主要考查了图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,难度适中.20、2022年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题(1)该记者本次一共调查了200名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“洒驾“禁令的人数.
考点:;用样本估计总体;;概率公式.专题:.分析:(1)从扇形图可看出①种情况占1%,从条形图知道有2人,所以可求出总人数.(2)求出④所占的百分比然后乘以360°就可得到圆心角度数,然后求出其他情况的人,补全条形图.(3)②种情况的概率为②中调查的人数除以调查的总人数.(4)2万人数减去第①种情况的人数就是不违反“洒驾“禁令的人数.解答:解:(1)21%=200(人)总人数是200人.
(2)70200×360°=126°.200×9%=18(人)200-18-2-70=110(人)
第②种情况110人,第③种情况18人.
(3)他属第②种情况的概率为110200=1120.在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率1120.(4)20000-20000×1%=19800(人).一共有19800人不违反“洒驾“禁令的人数.点评:本题考查对扇形图和条形图的认知能力,知道扇形图表现的是部分占整体的百分比,条形图告诉我们每组里面的具体数据,从而可求答案.21、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,3≈,tan15°=12+3)
考点:解直角三角形的应用-坡度坡角问题.专题:.分析:首先明确从M点上坡、过桥、下坡到N点的最短路径长应为如图ME+EF^+FN,连接如图,把实际问题转化为直角三角形问题,由已知求出OD即半径,再由坡度i=1:和tan15°=12+3=1:,得出∠M=∠N=15°,因此能求出ME和FN,所以求出∠EOM=∠FON=90°-15°=75°,则得出EF^所对的圆心角∠EOF,相继求出弧EF的长,从而求出从M点上坡、过桥、下坡到N点的最短路径长.解答:解:已知CD=24,0P=5,∴PD=12,∴OD2=OP2+PD2=52+122=169,∴OD=13,则OE=OF=13,已知坡度i=1:和tan15°=12+3=1:,∴∠M=∠N=15°,∴cot15°=2+3,∴ME=FN=13•cot15°=12×(2+3)=24+123,∠EOM=∠FON=90°-15°=75°,∴∠EOF=180°-75°-75°=30°,∴EF^=30360×2π×13=136π,∴ME+EF^+FN=24+123+136π+24+123≈.答:从M点上坡、过桥、下坡到N点的最短路径长为米.点评:此题考查的知识点是解直角三角形的应用,解题的关键是由已知先求出半圆的半径和∠M和∠N,再由直角三角形求出MF和FN,求出弧EF的长.22、如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx-1的图象平分它的面积,关于x的函数y=mx2-(3m+k)x+2m+k的图象与坐标轴只有两个交点,求m的值.考点:;一次函数的性质;.专题:计算题.分析:过B作BE⊥AD于E,连接OB、CE交于点P,根据矩形OCBE的性质求出B、P坐标,然后再根据相似三角形的性质求出k的值,将解析式y=mx2-(3m+k)x+2m+k中的k化为具体数字,再分m=0和m≠0两种情况讨论,得出m的值.解答:解:过B作BE⊥AD于E,连接OB、CE交于点P,∵P为矩形OCBE的对称中心,则过点P的直线平分矩形OCBE的面积.∵P为OB的中点,而B(4,2),P点坐标为(2,1),在Rt△ODC与Rt△EAB中,OC=BE,AB=CD,Rt△ODC≌Rt△EAB(HL),△ODC≌Rt△EBA,过点(0,-1)与P(2,1)的直线平分等腰梯形面积,这条直线为y=kx-1.2k-1=1,则k=1.∵关于x的函数y=mx2-(3m+1)x+2m+1的图象与坐标轴只有两个交点,∴①当m=0时,y=-x+1,其图象与坐标轴有两个交点(0,1),(1,0);②当m≠0时,函数y=mx2-(3m+1)x+2m+1的图象为抛物线,且与y轴总有一个交点(0,2m+1),若抛物线过原点时,2m+1=0,即m=-12,此时,△=(3m+1)2-4m(2m+1)=(m+1)2>0,故抛物线与x轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x轴只有一个交点,也符合题意.综上所述,m的值为m=0或-12.点评:此题考查了抛物线与坐标轴的交点,同时结合了梯形的性质和一次函数的性质,要注意数形结合,同时要进行分类讨论,得到不同的m值.23、2022年长江中下游地区发生了特大早情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.型号
金额
投资金额x(万元)Ⅰ型设备Ⅱ型设备X5X24补贴金额y(万元)y1=kx
(k≠0)2y2=ax2+bx
(a≠0)(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.考点:二次函数的应用.分析:(1)根据图表得出函数上点的坐标,利用待定系数法求出函数解析式即可;(2)根据y=y1+y2得出关于x的二次函数,求出二次函数最值即可.解答:解:(1)y1=kx,将(5,2)代入得:2=5k,k=,y1=,y2=ax2+bx,将(2,),(4,)代入得:{=4a+=16a+4b,解得:a=,b=,∴y2=+;(2)假设投资购买Ⅰ型用x万元、Ⅱ型为(10-x)万元,y=y1+y2=(10-x)2+(10-x);=2+,当x=-b2a=7时,y=4ac-b24a=万元,∴当购买Ⅰ型用7万元、Ⅱ型为3万元时能获得的最大补贴金额.点评:此题主要考查了待定系数法求一次函数和二次函数解析式以及二次函数的最值问题,利用函数解决实际问题是考试的中热点问题,同学们应重点掌握.24、如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此轴称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
考点:.分析:(1)如图甲,连接PE、PB,设PC=n,由正方形CDEF的面积为1,可得CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,由PB=PE,根据勾股定理即可求得n的值,继而求得B的坐标;(2)由(1)知A(0,2),C(2,0),即可求得抛物线的解析式,然后求得FM的长,则可得△PEF∽△EMF,则可证得∠PEM=90°,即ME是⊙P的切线;(3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,△ACQ周长的最小值为AC+A′C的长,利用勾股定理即可求得△ACQ周长的最小值;
②分别当Q点在F点上方时,当Q点在线段FN上时,当Q点在N点下方时去分析即可求得答案.解答:解:(1)如图甲,连接PE、PB,设PC=n,∵正方形CDEF的面积为1,∴CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,∴BC=2PC=2n,∵而PB=PE,∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川省农产品购销合同范本
- 2025企业借款协议合同范本
- 2025 果园、草地承包合同
- 房屋租赁合同范本范本
- 政府采购委托合同范本
- 市区房按揭贷款购买合同
- 租房看房协议书范本
- 2025信息技术服务购销合同范本
- 2025专利权许可合同样本
- 2025年03月浙江丽水市龙泉市事业单位公开招聘工作人员70人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 如果历史是一群喵
- 人教版小学数学六下第六单元《统计与概率》单元集体备课整体教学设计
- 工业设计项目报价单模板
- 手术前呼吸功能评估
- 针灸优势病种
- 中华八大菜系-闽菜
- 基于单片机的恒压供水系统设计(附原理图、程序清单及外文翻译)
- 《中医诊断学课件》
- MQL4命令中文详解手册
- 保安外包服务投标方案(技术标)
- 2023年浙江杭州市属事业单位统一招聘工作人员371人笔试参考题库(共500题)答案详解版
评论
0/150
提交评论